脊髓损伤非手术治疗的研究进展
2016-01-24孙祥耀海涌
孙祥耀 海涌
脊髓损伤非手术治疗的研究进展
孙祥耀 海涌
【关键词】脊髓损伤;创伤和损伤;治疗;药物疗法;组织疗法
脊柱脊髓损伤(spinal cord injury,SCI)具有较高的发病率及死亡率,据报道全世界范围内每百万人会有 15~40 人出现急性脊髓损伤[1]。引起脊髓损伤的原因通常为车祸、运动损伤、工作意外、打架斗殴以及高处坠落[2]。其中男女比例约为 2.5∶1[3]。非创伤性脊髓损伤的原因为脊髓血管病变(25%)、肿瘤(25%)、感染性疾病(20%)以及椎管狭窄(19%)[4]。最初的脊髓损伤常出现在损伤产生时,此种损伤预后较差,功能恢复不佳;在最初的损伤之后,继发性损伤主要是由神经细胞死亡引起[5]。继发性损伤最早的表现为由缺血引起灌注不足,从而引起能量供应不足[6]。脊髓损伤没有自愈能力,因此,由最初的机械性损伤因素引起的脊髓损伤往往无法恢复[7]。
目前,急性脊柱脊髓损伤的治疗主要包括药物治疗,手术治疗以及细胞治疗。在药物治疗方面除了部分临床研究之外,尚未形成共识。细胞治疗研究的进展给神经功能康复带来了希望。现就脊髓损伤的非手术治疗的研究进展综述如下。
一、药物治疗
1. 类固醇激素:皮质类固醇因其抗炎特性用于减轻急性脊髓损伤后脊髓水肿已有 30 年的历史[8-9]。尽管皮质类固醇激素的神经保护作用的确切机制尚不明确,但是有学者提出其机制为抑制脂质过氧化,调节炎性细胞因子引起的炎症反应和免疫反应,治疗血管再灌注以及防止钙离子进入细胞[10]。
2. 甲泼尼龙:甲泼尼龙是一种合成的糖皮质激素并且已经长期应用于治疗脊髓损伤和脑水肿;目前对甲泼尼龙的大规模应用来源于有三项分别被称为 NASCIS(national acute spinal cord injury studies)I、II、III 的大规模、回顾性、随机、双盲、多中心临床研究;其中 MASCIS I 的研究中,对脊髓损伤后 48 h 内的患者,应用 10 天 100 mg 或1000 mg 甲泼尼龙的治疗效果进行评估;两组治疗效果之间没有明显的差别[11]。实验表明 1000 mg 的剂量远远小于有效进行神经保护所需要的剂量,并且在 30~40 mg/kg的最初剂量之后,建议给予患者静脉维持剂量[12-13]。
因此在后来的 NASCI II 的研究中,在 30 mg/kg 的甲泼尼龙最大初始剂量之后,给予患者每小时 5.4 mg/kg 静脉滴注,维持 23 h;研究中所包含的 487 例患者在脊髓损伤后 12 h 之内,被随机分配到了甲泼尼龙组、纳洛酮组以及安慰剂组;据统计,在损伤后 8 h 内给予甲泼尼龙的完全和部分脊髓损伤的患者能够明显提高运动和感觉功能;通过此研究证实了甲泼尼龙对于脊髓损伤的治疗是有效的,并表明了其有效预防继发损伤[14]。随后 NASCIS III 对不同治疗窗之下 Tirilazad Mesylate 与甲泼尼龙治疗效果进行比较[15];因为抗氧化特性,一些类固醇激素使用引起的并发症应当避免;30 mg/kg 剂量甲泼尼龙以药丸的形式在损伤 8 h 后给予全部的 499 例患者,随后随机给予患者24 h 或 48 h 静脉滴注甲泼尼龙或 48 h Tirilazad Mesylate 静脉滴注;对于所有的治疗措施中,损伤后前 3 h 患者的运动及感觉恢复相似;在这些患者中 24 h 持续滴注甲泼尼龙是有必要的;在脊髓损伤后 3~8 h 内使用甲泼尼龙后,建议将静脉滴注时间延长到 48 h 会更加有利;甲泼尼龙组与对照组相比,6 个月甚至 1 年以后患者运动功能的情况有明显的改善[14]。
尽管 NASCIS II 和 III 引导了甲泼尼龙在治疗急性脊髓损伤方面临床应用标准的制定,对这些方面的研究结果以及相关评论目前尚有争议;这些情况使很多医疗机构放弃了对甲泼尼龙的使用;有学者对 NASCIS I 以及 NASCIS II进行了深入研究,结果显示在 48 h 内使用 NASCS III 对神经功能的康复疗效甚微,并且增加了伤口感染、肺栓塞、重症肺炎、败血症的风险,并且会增加呼吸系统并发症所导致的继发死亡风险[16]。对于在治疗脊髓损伤时是否应当使用这种治疗方法的争论仍在继续[17]。
3. 神经节苷酯 GM1:神经节苷酯存在于细胞膜外层的鞘磷脂,并且富含唾液酸的成分;在实验研究中发现了它在神经保护和神经功能恢复方面有潜在的作用,通过增加组织内细胞再生降低兴奋性氨基酸的毒性[18]。一项包含 37 例脊髓损伤患者的 GM1 疗效单中心回顾性随机临床研究取得了意义重大的临床效果[19]。在随后的全身应用GM1 的实验研究中,发现此种方法能够产生神经保护作用,如突起生长,适应性增强,预防细胞凋亡和抑制兴奋毒性[20]。这些阳性结果促成了多中心随机临床研究实施,并在 2001 年发表这项研究将 750 例随机分组,分别采用安慰剂、低剂量与高剂量 GM1 神经节苷酯进行治疗;在第 26 周,使用 GM1 神经节苷酯治疗的不全瘫痪患者,其感觉及运动功能评分以及肠道功能及膀胱功能等其它参考指标方面比安慰剂组有明显提高;但是这种治疗方法对完全瘫痪的患者无效[21]。
4. 阿片样受体拮抗剂:在神经损伤之后,强啡肽 A(一种内源性的阿片样物质)会大量溢出,从而产生神经毒性作用;并且它可以通过非阿片样机制降低脊髓的血流供应[22]。纳洛酮是一种非选择性阿片样受体拮抗剂;在神经损伤的动物实验模型中,纳洛酮的应用可以使功能及神经电生理方面均有提升;并且纳洛酮可以逆转脊髓震荡,提高脊髓血流量[23-24]。纳洛酮在 21 世纪 80 年代早期被广泛研究,并且在此期间有人类脊髓损伤 I 阶段研究对其进行评估;但是,纳洛酮的有利作用曾被认为是通过抑制脊髓损伤后内源性的阿片类物质的产生而实现的,但是这种观点未被证实[25-27]。纳洛酮的疗效首先在 NASCIS II 中进行研究,其三种治疗方法表明纳洛酮组与安慰剂组相比没有产生明显的神经保护作用[28]。
5. 促甲状腺激素释放激素以及其类似物:内源性阿片类物质、兴奋性氨基酸、白细胞三烯、血小板激活因子等继发性损伤介质可以被促甲状腺激素释放激素拮抗;脊髓损伤小鼠实验表明促甲状腺激素释放激素能促进功能的提升[29]。Pitts 等[30]在其研究中指出促甲状腺激素释放激素在增加血流方面有效,减少了脂质降解,能够有效止血并且提高神经功能。
6. 尼莫地平:据报道钙通道阻滞剂通过改善微循环提升了创伤后脊髓血流量;并且在脊髓损伤实验研究中,尼莫地平能够增加脊髓的血流量[31]。然而在其它的动物实验中,在脊髓损伤或脊髓缺血后使用尼莫地平不会引起神经系统的明显改善[32]。1996 年在法国进行的人类脊髓损伤研究中,对 100 例随机分为了尼莫地平组、MPSS(NASCIS II 方案)组、尼莫地平和 MPSS(NASCIS II 方案)同时采用组和安慰剂组;尽管此项实验可能在治疗效果的体现方面尚有薄弱环节,但是任何实验组都没有表现出安慰剂效应;受损脊髓的血流调节会产生全身性低血压的潜在风险,使用尼莫地平可能会增加这种风险,因此这种情况已经引起重视[33]。
7. 加环利定(GK11):谷氨酸盐是中枢神经系统中主要的兴奋性氨基酸,并且在继发性神经损伤中起到重要的作用。如同加环利定(GK11),在脊髓损伤动物实验中也表明其 NMDA 受体拮抗剂能够产生重要的神经保护作用[34]。随着谷氨酸盐分布到全身的各个部位,全身治疗的不良反应也凸显出来。在之前的研究之中发现,即使是赛福泰这种竞争性谷氨酸受体拮抗剂,也会对认知方面有明显的副作用,包括躁动、镇静、幻觉以及记忆力减退等[35]。因此,与 NMDA 拮抗剂相关的临床治疗的发展变得十分困难。除了比其它的 NMDA 受体拮抗剂有更好的耐受性以外,加环利定能够提高脊髓损伤小鼠模型中的功能、组织学和电生理状态[36]。
8. 镁疗法:镁是一种众所周知的神经保护药物,并在神经损伤后自由基和谷氨酸对血管结构的损伤中起到了重要作用。镁是通过降低神经结构中的自由基的产生而起作用;其可以刺激内皮细胞分泌前列环素,使供应脊髓的血管进行扩张;其可通过对谷氨酸的拮抗作用间接降低脂质的过氧化作用[37]。Kaptanoglu 等[38]在一项意在证明镁在脊髓损伤后的血管保护作用的实验中表明,镁能够在脊髓损伤中降低水肿及血管的通透性。
9. 低温疗法:低温疗法通过降低脑水肿和细胞内钙离子浓度,增加 γ-GABA 的释放,阻止谷氨酸的释放从而发挥神经保护作用[39]。除此之外,据报道适当降低体温能够降低细胞凋亡的发生率[40]。利用全身降温使脊髓降温是通过静脉输液实现的,局部降温是通过硬膜外或鞘内导管输入冷盐水进行降温;但是对长节段的脊髓进行降温在技术上十分困难[41]。因为低温疗法在临床应用中会产生低血压、心动过缓以及感染等并发症,除非处于安全、适用的情况,低温疗法不建议用来对脊髓损伤患者进行神经保护[42]。
10. 米诺环素:米诺环素能够降低兴奋毒性作用,减少因 caspase-1 引起的细胞凋亡,并且通过降低小胶质细胞活动以及自身免疫性脑脊髓炎从而对帕金森病患者产生神经保护作用,并且对肌萎缩侧索硬化症以及成人及新生儿缺血性脑损伤模型同样具有明显的神经保护作用[43]。据报道米诺环素还具有降低脊髓损伤后病灶大小的作用;并且在脊髓损伤的实验研究中,米诺环素还能够轻易通过血脑屏障,有效减低功能障碍的程度以及脊髓组织继发性线粒体细胞色素 C 的丢失[44]。
11. 赛生灵:赛生灵在小鼠模型中有促进轴突生长以及促进功能恢复的作用;研究者发现其有在早期提升神经功能并降低细胞凋亡发生率的作用[45]。
12. 促红细胞生成素:Kapatanoglu 等[46]指出促红细胞生成素抑制了脊髓损伤后脂质过氧化,并且产生了超微神经结构保护作用;中枢神经系统中的促红细胞生成素以及其衍生物是有组织保护作用的内源性细胞因子[47]。脊髓挫伤后 7 天进行组织学检查发现,使用重组人促红细胞生成素可以使脊髓空洞明显缩小;其能抑制细胞凋亡,降低炎症反应,兴奋性调节促进神经干细胞的增值与分化[48]。促红细胞生成素能够提升脊髓白质与灰质的营养供应,减少细胞凋亡以及脂质过氧化的发生,降低炎性细胞因子的释放以及中性粒细胞的入侵,降低蛋白激酶磷酸化作用,但是对急性脊髓损伤的功能恢复的作用尚不明确[49]。
13. 雌激素:实验证据表明雌激素在激素依赖性神经保护中可能有重要作用;雌激素依赖性神经保护作用是通过抗凋亡因子 Bcl-2 和激活蛋白激酶通路实现的[50]。非实验研究结果表明,雌激素可以减轻继发性组织损伤的发生,降低髓过氧化物酶的活性,减少小胶质细胞以及巨噬细胞的堆积,减轻细胞凋亡的发生[51]。
14. 黄体酮:黄体酮在神经系统中广泛存在,其主要作用为降低炎性细胞因子产生,降低继发性神经损伤的兴奋性毒性作用;在脊髓损伤模型的研究中,黄体酮能够降低氧化剂的产生以及自由基的产生,并且为脊髓提供稳定的神经营养因子[52]。近期的研究表明,在损伤的脊髓中,黄体酮能够调节传统的神经递质系统,调节基因和蛋白质的表达,调节细胞形态改变,调节受体及神经递质的表达[53]。
15. 环氧和酶抑制剂:感染性前列腺素在继发损伤中有重要作用。据研究吲哚美辛减低了脊髓损伤患者的组织损伤与水肿;甲氯芬那酸与布洛芬是两种非甾体类抗炎药,在脊髓损伤后改善脊髓血流的动物实验中被广泛应用;在此研究之中,血栓素抑制剂与前列环素类似物合用也能产生同样的效果[54]。动物实验研究发现脊髓损伤后Cox-2 的产生增加;并且 Cox-2 抑制剂 SC-236 的使用,带来了良好的神经保护作用,脊髓损伤后功能障碍明显改善[56]。尽管 Cox-1 与 Cox-2 抑制剂在治疗人类脊髓损伤方面尚未报道,这些药物的广泛应用因为很多与安全和药代动力学相关的问题而未被实施[55]。
16. 利鲁唑:利鲁唑是一种钠通道阻滞剂,被用于肌萎缩侧索硬化症的治疗;有实验研究表明利鲁唑能够对脊髓损伤者产生神经保护作用,并且能够降低脊髓灰质与白质的损害,提高运动动能[56]。对于利鲁唑应用于治疗脊柱脊髓损伤动物的剂量效应尚无明确报道,Kitzman 等[57]发现使用 8 mg/kg 和 10 mg/kg 时,脊髓损伤小鼠的尾部僵直均减轻,但是高剂量时昏睡和运动性共济失调等全身性不良反应更易发生。相关研究表明在使用利鲁唑以后15 min[58]和 30 min[59]间隔期后,才会出现神经保护作用。
17. 阿托伐他汀:阿托伐他汀治疗能够提供防止胶质细胞增生,减轻创伤引起的组织坏死,减轻髓鞘缺失从而产生保护性作用;它也可通过降低诱生型一氧化氮合酶活性,减少肿瘤坏死因子 α 和白细胞介素-1β 的释放从而防止神经元细胞和少突胶质细胞的坏死[60]。
18. 抗氧化剂:动物实验研究表明脊髓损伤后自由基增加;尽管抗坏血酸和低温疗法的作用机制不同,其产生的协同效应降低了自由基的产生,减轻了相关损伤[61]。褪黑素[62],EPC-K1[63],维生素 E 和硒[64]等均为自由基清除药物,并且在脊髓损伤患者的治疗方面有效。关于一氧化氮合成酶抑制剂[65]、聚乙二醇[66]、脂多糖[67]、抗CD11d 抗体[68]、肌苷[69]和吡格列酮[70]等在脊髓损伤治疗中的研究已经被实施。
二、细胞移植疗法
在过去的几十年来,学界对细胞移植进行了大量的动物实验研究。细胞移植疗法的基本原理是为受损组织提供促细胞生长素、细胞移植、结构原件和髓鞘单元[71]。细胞移植疗法的目的是通过轴突的再生和重建恢复功能;重建和再生的细胞实验方法包括胚胎或成人干细胞或组织研究[72],成纤维细胞的基因调控[73],施万细胞(schwann cells,SCs)[74],嗅鞘细胞移植[75-76],骨髓基质干细胞[77],神经干细胞[78]以及激活巨噬细胞相关研究[79],并且其相关报道在不同的脊髓损伤模型中取得了不同程度的功能恢复。
1. 施万细胞:施万细胞是脊髓损伤修复中最常用的细胞种类之一;很多研究已经报道,施万细胞是周围神经系统中的髓鞘形成细胞,其移植入损伤的脊髓后不仅形成轴突的髓鞘,并且能够为轴突的再生形成宽松的底物[80-81]。施万细胞移植在由光化学[82]、横断损伤[83]和亚急性挫伤[84]导致的脊髓损伤模型中,能改善运动情况,提高神经生物学指标的恢复。Oudega 等[85]发现施万细胞移植在周围神经系统重建,多种生长因子释放以及轴突重建中起到重要作用。除此之外,施万细胞移植能够产生许多促进轴突生长的基质,如纤维连接蛋白和层粘连蛋白等[85]。另一方面,施万细胞移植能够对完整和再生的中枢神经系统轴突进行包鞘[86]。因此施万细胞移植可以称为治疗脊髓损伤最有效的细胞移植治疗方法之一。但是目前仍然需要人类施万细胞在治疗脊髓损伤模型的存活率以及疗效相关的临床前研究。
2. 嗅神经鞘细胞(olfactory ensheathing cells,OECs):嗅觉黏膜包含能够分化成神经细胞及非神经细胞的多能干细胞[87]。OECs 能够促进损伤后轴突和髓鞘再生;作为一种自体细胞的可靠来源,嗅黏膜具有持久的再生能力,并且能够通过微创方法取得;将 OECs 移植入损伤的脊髓能够促进轴突髓鞘的再生,促进脊髓损伤的恢复[88]。另一方面,临床研究表明 OECs 移植是一种安全的方法[89],能够提高脊髓损伤后感觉运动功能[90]。
3. 骨髓细胞(bone marrow cells,BMCs)移植:在近几年中,一些研究表明骨髓细胞能够分化为胶质细胞,并且可以经过特殊的实验步骤分化为成熟神经细胞[91]。骨髓细胞移植在脊髓损伤模型上的应用研究表明,其能够通过促进髓鞘生成细胞的以及神经细胞的产生而改善神经功能障碍[92]。并且骨髓细胞能够产生神经保护因子,能够拯救损伤后濒临死亡的细胞[93]。
4. 活化巨噬细胞:损伤后,巨噬细胞及其相关细胞因子侵入受损组织[94]。在神经系统中巨噬细胞趋化因子能够诱导产生相关组件,例如神经生长因子及细胞黏附分子[95]。动物实验发现,活化巨噬细胞植入横断的脊髓中可以促进组织修复以及运动功能修复[96]。除此之外,在坐骨神经损伤的研究中发现,阻止巨噬细胞的侵入会妨碍受损组织的再生[97]。
5. 少突胶质前体细胞(oligodend-rocyte progenitor cells,OPCs):OPCs 和来源于 OPCs 为中枢神经修复带来了希望。它们起源于神经上皮细胞,并且在中枢神经系统中产生髓鞘[98]。是否 OPCs 能够支持损伤轴突的修复尚不明确,但是对于少突胶质细胞在治疗神经损伤方面的应用,是基于其能在脱髓鞘的轴突上产生髓鞘;少突胶质细胞的死亡会引起髓鞘脱失[99]。中枢神经系统功能障碍和创伤后,轴突脱髓鞘会引起生理功能异常;除此之外,细胞凋亡在少突胶质细胞死亡中起主要作用[100]。再生轴突以及脱髓鞘完整轴突的髓鞘再生,是促进功能恢复的重要方法。
许多学者建议对脊髓损伤进行早期干预[1-7]。目前最主要的问题是在手术治疗过程中采用药物,如神经营养药物等,以及促进细胞再生的方法进行辅助治疗,对患者的预后也同样有重要意义。急性脊髓损伤后神经功能障碍的恢复是神经科学中一个重要的话题。很多在动物实验中证明有效的非手术治疗方法,在临床应用中疗效不佳。多年以来,有学者试图寻找一种能够在急性神经损伤后提高神经功能的方法,但是脊髓再生在人体尚未成功。尽管脊髓损伤的药物治疗与手术治疗研究取得了重大进步,但是脊髓损伤仍然是一个复杂的医学问题,还有许多问题尚未取得突破性进展。
参 考 文 献
[1]Aki T, Toya S. Experimental study on changes of the spinalevoked potential and circulatory dynamics following spinal cord compression and decompression. Spine, 1984, 9(8):800-809.
[2]Tator CH, Edmonds VE. Acute spinal cord injury: analysis of epidemiologic factors. Can J Surg, 1979, 22(6):575-578.
[3]Karacan I, Koyuncu H, Pekel O, et al. Traumatic spinal cord injuries in Turkey: a nation-wide epidemiological study. SpinalCord, 2000, 38(11):697-701.
[4]Citterio A, Franceschini M, Spizzichino L, et al. Nontraumatic spinal cord injury: an Italian survey. Arch Phys Med Rehabil,2004, 85(9):1483-1487.
[5]Hui SP, Dutta A, Ghosh S. Cellular response after crush injury in adult zebrafsh spinal cord. Dev Dyn, 2010, 239(11):2962-2979.
[6]Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery, 1999, 44(5):1027-1039,1039-1040.
[7]Li M, Ona VO, Chen M, et al. Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience, 2000, 99(2):333-342.
[8]Lee RS, Noonan VK, Batke J, et al. Feasibility of patient recruitment into clinical trials of experimental treatments for acute spinal cord injury. J Clin Neurosci, 2012, 19(10):1338-1343.
[9]Ducker TB, Hamit HF. Experimental treatments of acute spinal cord injury. J Neurosurg, 1969, 30(6):693-697.
[10]Zhuang Y, Liu P, Wang L, et al. Mitochondrial oxidative stressinduced hepatocyte apoptosis reflects increased molybdenum intake in caprine. Biol Trace Elem Res, 2015.
[11]Bracken MB, Collins WF, Freeman DF, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA, 1984,251(1):45-52.
[12]Hurlbert RJ, Hadley MN, Walters BC, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery, 2015,76(Suppl 1):S71-83.
[13]Young W, Decrescito V, Flamm ES, et al. Pharmacological therapy of acute spinal cord injury: studies of high dose methylprednisolone and naloxone. Clin Neurosurg, 1988, 34:675-697.
[14]Bracken MB, Shepard MJ, Collins WF, et al. A randomized,controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med, 1990,322(20):1405-1411.
[15]Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. national acute spinal cord injury study. JAMA,1997, 277(20):1597-1604.
[16]Coleman WP, Benzel D, Cahill DW, et al. A critical appraisal of the reporting of the national acute spinal cord injury studies(II and III)of methylprednisolone in acute spinal cord injury. J Spinal Disord, 2000, 13(3):185-199.
[17]Tator CH. Strategies for recovery and regeneration after brain and spinal cord injury. Inj Prev, 2002, 8(Suppl 4):V33-36.
[18]Bose B, Osterholm JL, Kalia M. Ganglioside-induced regeneration and reestablishment of axonal continuity in spinal cordtransected rats. Neurosci Lett, 1986, 63(2):165-169.
[19]Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury--a randomized, placebocontrolled trial with GM-1 ganglioside. N Engl J Med, 1991,324(26):1829-1838.
[20]Imanaka T, Hukuda S, Maeda T. The role of GM1-ganglioside in the injured spinal cord of rats: an immunohistochemical study using GM1-antisera. J Neurotrauma, 1996, 13(3):163-170.
[21]Geisler FH, Coleman WP, Grieco G, et al. The sygen multicenter acute spinal cord injury study. Spine, 2001, 26(24 Suppl):S87-98.
[22]Long JB, Kinney RC, Malcolm DS, et al. Intrathecal dynorphin A1-13 and dynorphin A3-13 reduce rat spinal cord blood fow by non-opioid mechanisms. Brain Res, 1987, 436(2):374-379.
[23]Baskin DS, Simpson RJ, Browning JL, et al. The effect of longterm high-dose naloxone infusion in experimental blunt spinal cord injury. J Spinal Disord, 1993, 6(1):38-43.
[24]Winkler T, Sharma HS, Stalberg E, et al. Naloxone reduces alterations in evoked potentials and edema in trauma to the rat spinal cord. Acta Neurochir Suppl(Wien), 1994, 60:511-515.
[25]Flamm ES, Young W, Collins WF, et al. A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg,1985, 63(3):390-397.
[26]Faden AI, Jacobs TP, Mougey E, et al. Endorphins in experimental spinal injury: therapeutic effect of naloxone. Ann Neurol, 1981, 10(4):326-332.
[27]Holaday JW, Faden AI. Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res, 1980, 189(1):295-300.
[28]Bracken MB, Collins WF, Freeman DF, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA, 1984,251(1):45-52.
[29]Hashimoto T, Fukuda N. Effect of thyrotropin-releasing hormone on the neurologic impairment in rats with spinal cord injury: treatment starting 24 h and 7 days after injury. Eur J Pharmacol, 1991, 203(1):25-32.
[30]Pitts LH, Ross A, Chase GA, et al. Treatment with thyrotropinreleasing hormone(TRH)in patients with traumatic spinal cord injuries. J Neurotrauma, 1995, 12(3):235-243.
[31]Guha A, Tator CH, Piper I. Effect of a calcium channel blocker on posttraumatic spinal cord blood flow. J Neurosurg, 1987,66(3):423-430.
[32]Ford RW, Malm DN. Failure of nimodipine to reverse acute experimental spinal cord injury. Cent Nerv Syst Trauma, 1985,2(1):9-17.
[33]Petitjean ME, Pointillart V, Dixmerias F, et al. Medical treatment of spinal cord injury in the acute stage. Ann Fr Anesth Reanim, 1998, 17(2):114-122.
[34]Gaviria M, Privat A, D'Arbigny P, et al. Neuroprotective effects of a novel NMDA antagonist, Gacyclidine, after experimental contusive spinal cord injury in adult rats. Brain Res, 2000,874(2):200-209.
[35]Davis SM, Albers GW, Diener HC, et al. Termination of acute stroke studies involving selfotel treatment. ASSIST steering committed. Lancet, 1997, 349(9044):32.
[36]Hirbec H, Gaviria M, Vignon J. Gacyclidine: a new neuroprotective agent acting at the N-methyl-D-aspartate receptor. CNS Drug Rev, 2001, 7(2):172-198.
[37]Solaroglu I, Kaptanoglu E, Okutan O, et al. Magnesium sulfate treatment decreases caspase-3 activity after experimental spinal cord injury in rats. Surg Neurol, 2005, 64(Suppl 2):S17-21.
[38]Kaptanoglu E, Beskonakli E, Okutan O, et al. Effect of magnesium sulphate in experimental spinal cord injury:evaluation with ultrastructural findings and early clinical results. J Clin Neurosci, 2003, 10(3):329-334.
[39]Tuzgen S, Kaynar MY, Guner A, et al. The effect of epidural cooling on lipid peroxidation after experimental spinal cord injury. Spinal Cord, 1998, 36(9):654-657.
[40]Xu RX, Nakamura T, Nagao S, et al. Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia. Neurosurgery, 1998, 43(1):107-115.
[41]Vanicky I, Marsala M, Galik J, et al. Epidural perfusion cooling protection against protracted spinal cord ischemia in rabbits. J Neurosurg, 1993, 79(5):736-741.
[42]Fu ES, Tummala RP. Neuroprotection in brain and spinal cord trauma. Curr Opin Anaesthesiol, 2005, 18(2):181-187.
[43]Stirling DP, Khodarahmi K, Liu J, et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci, 2004, 24(9):2182-2190.
[44]Teng YD, Choi H, Onario RC, et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional defcits after spinal cord injury. Proc Natl Acad Sci USA, 2004, 101(9):3071-3076.
[45]Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci,2002, 22(15):6570-6577.
[46]Kapatanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats:effect on lipid peroxidation and early ultrastructural fndings. Neurosurg Rev, 2004, 27(2):113-120.
[47]Correia PN, Meyer IA, Eskandari A, et al. Beauty parlor stroke revisited: An 11-year single-center consecutive series. Int J Stroke, 2016, 11(3):356-360.
[48]Arishima Y, Setoguchi T, Yamaura I, et al. Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats. Spine, 2006, 31(21):2432-2438.
[49]Cetin A, Nas K, Buyukbayram H, et al. The effects of systemically administered methylprednisolone and recombinant human erythropoietin after acute spinal cord compressive injury in rats. Eur Spine J, 2006, 15(10):1539-1544.
[50]Samantaray S, Das A, Matzelle DC, et al. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cordinjury in rats. J Neurochem, 2016, 136(5):1064-1073.
[51]Sareddy GR, Zhang Q, Wang R, et al. Proline-, glutamic acid,and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci USA,2015, 112(48):E6673-6682.
[52]Gonzalez SL, Labombarda F, Gonzalez DM, et al. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Mol Biol, 2005, 94(1-3):143-149.
[53]Thomas AJ, Nockels RP, Pan HQ, et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine, 1999, 24(20):2134-2138.
[54]Hall ED, Wolf DL. A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. J Neurosurg, 1986, 64(6):951-961.
[55]Dumont RJ, Verma S, Okonkwo DO, et al. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol, 2001, 24(5):265-279.
[56]Karadimas SK, Laliberte AM, Tetreault L, et al. Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy. Sci Transl Med, 2015, 7(316):194r-316r.
[57]Kitzman PH. Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat. Neurosci Lett, 2009, 455(2):150-153.
[58]Springer JE, Azbill RD, Kennedy SE, et al. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem, 1997, 69(4):1592-1600.
[59]Stutzmann JM, Pratt J, Boraud T, et al. The effect of riluzole on post-traumatic spinal cord injury in the rat. Neuroreport, 1996,7(2):387-392.
[60]Pannu R, Barbosa E, Singh AK, et al. Attenuation of acute infammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res, 2005, 79(3):340-350.
[61]Lou J, Lenke LG, Ludwig FJ, et al. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord, 1998, 36(10):683-690.
[62]Kaptanoglu E, Tuncel M, Palaoglu S, et al. Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurosurg, 2000, 93(Suppl 1):S77-84.
[63]Fujimoto T, Nakamura T, Ikeda T, et al. Effects of EPC-K1 on lipid peroxidation in experimental spinal cord injury. Spine,2000, 25(1):24-29.
[64]Anderson DK, Means ED, Waters TR, et al. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg, 1982, 56(1):106-113.
[65]Sharma HS, Badgaiyan RD, Alm P, et al. Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injuryinduced pathophysiology and motor functions: an experimental study in the rat. Ann N Y Acad Sci, 2005, 1053:422-434.
[66]Baptiste DC, Austin JW, Zhao W, et al. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol,2009, 68(6):661-676.
[67]Davis AE, Campbell SJ, Wilainam P, et al. Post-conditioning with lipopolysaccharide reduces the infammatory infltrate to the injured brain and spinal cord: a potential neuroprotective treatment. Eur J Neurosci, 2005, 22(10):2441-2450.
[68]Ditor DS, Bao F, Chen Y, et al. A therapeutic time window for anti-CD 11d monoclonal antibody treatment yielding reduced secondary tissue damage and enhanced behavioral recovery following severe spinal cord injury. J Neurosurg Spine, 2006,5(4):343-352.
[69]Liu F, You SW, Yao LP, et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord, 2006,44(7):421-426.
[70]Mctigue DM, Tripathi R, Wei P, et al. The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol, 2007, 205(2):396-406.
[71]Garcia-Alias G, Lopez-Vales R, Fores J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J NeurosciRes, 2004, 75(5):632-641.
[72]Akiyama Y, Honmou O, Kato T, et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol, 2001, 167(1):27-39.
[73]Liu Y, Himes BT, Murray M, et al. Grafts of BDNF-producing fbroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol, 2002, 178(2):150-164.
[74]Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma, 2006, 23(3-4):453-467.
[75]Garcia-Alias G, Lopez-Vales R, Fores J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res, 2004, 75(5):632-641.
[76]Barakat DJ, Gaglani SM, Neravetla SR, et al. Survival,integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant, 2005,14(4):225-240.
[77]Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res, 2007, 161:217-233.
[78]Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA, 2005, 102(39):14069-14074.
[79]Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med, 1998, 4(7):814-821.
[80]Beattie MS, Bresnahan JC, Komon J, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol, 1997,148(2):453-463.
[81]Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci, 2002, 22(15):6670-6681.
[82]Garcia-Alias G, Lopez-Vales R, Fores J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res, 2004, 75(5):632-641.
[83]Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma, 2006, 23(3-4):453-467.
[84]Firouzi M, Moshayedi P, Saberi H, et al. Transplantation of Schwann cells to subarachnoid space induces repair in contused rat spinal cord. Neurosci Lett, 2006, 402(1-2):66-70.
[85]Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma, 2006, 23(3-4):453-467.
[86]Gilmore SA. Autoradiographic studies of intramedullary Schwann cells in irradiated spinal cords of immature rats. Anat Rec, 1971, 171(4):517-528.
[87]Huard JM, Youngentob SL, Goldstein BJ, et al. Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol, 1998, 400(4):469-486.
[88]Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J, 2005, 19(7):694-703.
[89]Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia:a 3-year clinical trial. Brain, 2008, 131(Pt 9):2376-2386.
[90]Guest J, Herrera LP, Qian T. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal Cord, 2006, 44(3):135-142.
[91]Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells,mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells, 2003, 21(4):437-448.
[92]Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci, 2002, 22(15):6623-6630.
[93]Kawada H, Takizawa S, Takanashi T, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation,2006, 113(5):701-710.
[94]Schwartz M, Cohen A, Stein-Izsak C, et al. Dichotomy of the glial cell response to axonal injury and regeneration. FASEB J,1989, 3(12):2371-2378.
[95]Heumann R, Lindholm D, Bandtlow C, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration,and regeneration: role of macrophages. Proc Natl Acad Sci USA, 1987, 84(23):8735-8739.
[96]Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med, 1998, 4(7):814-821.
[97]Perry VH, Brown MC, Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med, 1987, 165(4):1218-1223.
[98]Barres BA, Hart IK, Coles HS, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell, 1992, 70(1):31-46.
[99]Bunge RP, Puckett WR, Hiester ED. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol, 1997, 72:305-315.
[100]Crowe MJ, Bresnahan JC, Shuman SL, et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med, 1997, 3(1):73-76.
(本文编辑:李贵存)
. 综述 Review .
DOI:10.3969/j.issn.2095-252X.2016.06.008中图分类号:R683.2
作者单位:100020 北京,首都医科大学附属北京朝阳医院骨科
通信作者:海涌,Email: spinesurgeon@163.com
Corresponding author:HAI Yong, Email: spinesurgeon@163.com
收稿日期:(2016-02-18)
Development in the non-surgical treatment of spinal cord injury
SUN Xiang-yao, HAI Yong.
Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PRC
【Abstract】Spinal cord injury(SCI)leads to high rate of mortality. SCI consists of primary spinal cord injury and secondary spinal cord injury. The frst step is primary mechanical damage that occurs within minutes as a result of mechanical SCI. The second step is the secondary injury triggered by the primary damage. Then it leads to apoptotic nerve cell death. Currently, the management of patients with acute spinal cord injury(SCI)includes pharmacological agents, surgical intervention and cellular therapies. Pharmacological agents includes steroids,including methylprednisolone, ganglioside GM-1, opioid receptor antagonists, thyrotropin releasing hormone and its analogs, nimodipine, gacyclidine(GK11), magnesium, minocycline, cethrin , erythropoietin, estrogen,progesterone, cyclooxygenase inhibitors, riluzole, atorvastatin, and antioxidants. Recently, attempted cellular therapy and transplantations are promising. Cellular therapy consists of Schwann cell transplantation, olfactory ensheathing cells transplantation, bone marrow cells transplantation, stimulated macrophages transplantation and oligodendrocyte progenitor cells transplantation. Today, the most important problem is ineffectiveness of nonsurgical treatment choices in human SCI that showed neuroprotective effects in animal studies. Simultaneously, there is still no consensus about the treatment.
【Key words】Spinal cord injury; Wounds and injuries; Treatment; Drug therapy; Tissue therapy