APP下载

利用Kloosterman和刻画一类超Bent函数

2016-01-22唐春明亓延峰徐茂智

关键词:密码学布尔刻画

唐春明,亓延峰,徐茂智

(1.西华师范大学数学与信息学院,四川 南充 637002;2.杭州电子科技大学理学院,浙江 杭州 310018;3.北京大学数学科学学院,北京 100871)

摘要:超Bent函数是一类具有特殊性质的Bent函数,在编码、通信和密码学中都有着重要的应用。该文研究一类Dillon型布尔函数,使用指数和给出了此类函数的超Bent性刻画,并建立此类函数的超Bent性与Kloosterman和,三次和之间的联系。在一些特殊情形下,具体考虑此类函数的超Bent性的刻画,使用Kloosterman和以及三次和的一些特殊值来刻画这些函数的超Bent性,并给出了一些具体超Bent函数的例子,方便地给出许多超Bent函数,从而丰富和发展了超Bent函数理论。

关键词:Bent函数;超Bent函数;Dillon型函数;Walsh-Hadamard变换;Kloosterman和

DOI: 10.13954/j.cnki.hdu.2015.01.014

利用Kloosterman和刻画一类超Bent函数

唐春明1,亓延峰2,徐茂智3

(1.西华师范大学数学与信息学院,四川 南充 637002;2.杭州电子科技大学理学院,浙江 杭州 310018;3.北京大学数学科学学院,北京 100871)

摘要:超Bent函数是一类具有特殊性质的Bent函数,在编码、通信和密码学中都有着重要的应用。该文研究一类Dillon型布尔函数,使用指数和给出了此类函数的超Bent性刻画,并建立此类函数的超Bent性与Kloosterman和,三次和之间的联系。在一些特殊情形下,具体考虑此类函数的超Bent性的刻画,使用Kloosterman和以及三次和的一些特殊值来刻画这些函数的超Bent性,并给出了一些具体超Bent函数的例子,方便地给出许多超Bent函数,从而丰富和发展了超Bent函数理论。

关键词:Bent函数;超Bent函数;Dillon型函数;Walsh-Hadamard变换;Kloosterman和

DOI:10.13954/j.cnki.hdu.2015.01.014

收稿日期:2014-06-06

基金项目:国家自然科学基金资助项目(10990011,11401480,61272499)

作者简介:唐春明(1982-),男,四川南充人,讲师,密码学与信息安全.

中图分类号:TN918.1

文献标识码::A

文章编号::1001-9146(2015)01-0067-08

Abstract:Hyper-Bent functions as a subclass of Bent functions can be applied to coding theory, communication and cryptography. This paper considers a class of Boolean functions with Dillon exponents, characterizes these functions with exponential sums, and presents the link of hyper-Bentness of these hyper-Bent functions with Kloosterman sums and cubic sums. For some special cases, we present the concrete characterization of these hyper-Bent functions with special values of Kloosterman sums and cubic sums, and give some concrete examples of hyper-Bent functions. From our method, many hyper-Bent functions can be given. That enriches the theory of hyper-Bent functions.

0引言

本文第一节给出了一些基本记号,并回顾了bent函数,超bent函数,以及指数和的相关定义和结论。第二节研究一类布尔函数的超bent性,并利用Kloosterman和来刻画此类函数的超Bent性,具体地使用Kloosterman和的特殊值给出了一些此类超bent函数。最后,第三节是全文的一个总结。

1预备知识

1.1 超bent函数

若f是一个Bent函数,那么n必然是一个偶数,而且其代数次数deg(f)≤n/2。超Bent函数是Bent函数中的一个重要的子类,其定义如下。

定义2一个Bent函数称为超Bent函数,若它对满足(i,2n-1)=1的任意i,有f(xi)也是一个Bent函数。

1.2 指数和

下面介绍一些特殊的指数和的定义和结论。

命题1设a∈F2m,则Km(a)∈[-2(m+2)/2+1,2(m+2)/2+1],而且Km(a)≡0mod 4。

Kloosterman和的如下除法性质也将经常被用到[31]。

命题3设m是一个奇整数,则:

1)Cm(1,1)=(-1)(m2-1)/82(m+1)/2;

1)Km(a)≡1mod 3;

2)Cm(a,a)=0;

证明由命题2知,结论(1)与(3)等价。

为了记号简单起见,记Cm(a):=Cm(a,a)。将要使用到如下的指数和:

(1)

式中,U3={u3:u∈U}。Mesnager给出了这个指数和与Kloosterman和,三次和之间的关系[16-17]。

(2)

2超Bent函数和Kloosterman和

考虑如下Dillon型布尔函数:

(3)

证明使用文献[15,19]中的证明方法考虑f(x)的Walsh-Hadamard谱值,可以得到本引理的结论。

定理1设f(x)如式(3)定义,则:

综上,定理得证。

3结束语

参考文献

[1]Rothaus O S. On “bent” functions[J]. Journal of Combinatorial Theory, Series A,1976,20(3):300-305.

[2]Mesnager S. Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials[J]. Information Theory, IEEE Transactions on,2011,57(9):5 996-6 009.

[3]Carlet C, Gaborit P. Hyper-bent functions and cyclic codes[J]. Journal of Combinatorial Theory, Series A,2006,113(3):466-482.

[4]Carlet C. Boolean functions for cryptography and error correcting codes[J]. Boolean Models and Methods in Mathematics, Computer Science, and Engineering,2010,2:257-397.

[5]Dobbertin H, Leander G. A survey of some recent results on bent functions[M]//Sequences and Their Applications-SETA 2004. Springer Berlin Heidelberg,2005:1-29.

[6]Canteaut A, Charpin P, Kyureghyan G M. A new class of monomial bent functions[J]. Finite Fields and Their Applications,2008,14(1):221-241.

[7]Charpin P, Gong G. Hyperbent functions, Kloosterman sums, and Dickson polynomials[J]. Information Theory, IEEE Transactions on,2008,54(9):4 230-4 238.

[8]Charpin P, Kyureghyan G M. Cubic monomial bent functions: A subclass of M[J]. SIAM Journal on Discrete Mathematics,2008,22(2):650-665.

[9]Dillon J F. Elementary Hadamard difference sets[D]. University of Maryland, College Park.,1974.

[10] Dillon J F, Dobbertin H. New cyclic difference sets with Singer parameters[J]. Finite Fields and Their Applications,2004,10(3):342-389.

[11]Dobbertin H, Leander G, Canteaut A, et al. Construction of bent functions via Niho power functions[J]. Journal of Combinatorial Theory, Series A,2006,113(5):779-798.

[12]Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.)[J]. Information Theory, IEEE Transactions on,1968,14(1):154-156.

[13]Leander N G. Monomial bent functions[J]. Information Theory, IEEE Transactions on,2006,52(2):738-743.

[14]Kholosha A, Leander G. Bent Functions With 2^ r Niho Exponents[J]. IEEE Transactions on Information Theory,2006,52(12):5 529-5 532.

[15]Mesnager S. Hyper-bent Boolean functions with multiple trace terms[M]//Arithmetic of Finite Fields. Springer Berlin Heidelberg,2010:97-113.

[16]Mesnager S. A new class of bent and hyper-bent Boolean functions in polynomial forms[J]. Des. Codes Cryptography,2011,59(1-3):265-279.

[17]Mesnager S. A new class of bent Boolean functions in polynomial forms[C] //International Workshop on Coding and Cryptography—WCC 2009. Springer Berlin Heidelberg,2009:5-18.

[18]Mesnager S. A new family of hyper-bent Boolean functions in polynomial form[M]//Cryptography and Coding. Springer Berlin Heidelberg,2009:402-417.

[19]Yu N Y, Gong G. Constructions of quadratic bent functions in polynomial forms[J]. Information Theory, IEEE Transactions on,2006,52(7):3 291-3 299.

[20]Youssef A M, Gong G. Hyper-bent functions[M]. Berlin: Springer Berlin Heidelberg,2001:406-419.

[21]Gong G, Golomb S W. Transform domain analysis of DES[J]. Information Theory, IEEE Transactions on,1999,45(6):2 065-2 073.

[22]Lisonek P. An efficient characterization of a family of hyperbent functions[J]. Information Theory, IEEE Transactions on,2011,57(9):6 010-6 014.

[23]Wang B, Tang C, Qi Y, et al. A New Class of Hyper-bent Boolean Functions with Multiple Trace Terms[J]. IACR Cryptology ePrint Archive,2011,2011:600.

[24]Wang B, Tang C, Qi Y, et al. A generalization of the class of hyper-bent Boolean functions in binomial forms[J]. IACR Cryptology ePrint Archive,2011,2011:698.

[25]Tang C, Qi Y, Xu M, et al. A new class of hyper-bent Boolean functions in binomial forms[J]. arXiv preprint arXiv:1112.0062,2011.

[26]Flori J P, Mesnager S. An efficient characterization of a family of hyper-bent functions with multiple trace terms[J]. Journal of Mathematical Cryptology,2013,7(1):43-68.

[27]Flori J P, Mesnager S. Dickson polynomials, hyperelliptic curves and hyper-bent functions[M]//Sequences and Their Applications-SETA 2012. Springer Berlin Heidelberg,2012:40-52.

[28]Mesnager S, Flori J P. Hyperbent Functions via Dillon-Like Exponents[J]. Information Theory, IEEE Transactions on,2013,59(5):3 215-3 232.

[29]Li N, Helleseth T, Tang X, et al. Several new classes of bent functions from Dillon exponents[J]. IEEE transactions on information theory,2013,59(3):1 818-1 831.

[30]Lachaud G, Wolfmann J. The weights of the orthogonals of the extended quadratic binary Goppa codes[J]. Information Theory, IEEE Transactions on,1990,36(3):686-692.

[31]Charpin P, Helleseth T, Zinoviev V. Divisibility properties of classical binary Kloosterman sums[J]. Discrete Mathematics,2009,309(12):3 975-3 984.

[32]Carlitz L. Explicit evaluation of certain exponential sums[J]. Mathematica Scandinavica,1979,44:5-16.

A Class of Hyper-Bent Functions Characterized by Kloosterman Sums

Tang Chunming1, Qi Yanfeng2, Xu Maozhi3

(1.SchoolofMathematicsandInformation,ChinaWestNormalUniversity,NanchongSichuan637002,China;

2.SchoolofScience,HangzhouDianziUniversity,HangzhouZhejiang310018,China;

3.LMAM,SchoolofMathematicalSciences,PekingUniversity,Beijing100871,China)

Key words: Bent functions; hyper-Bent functions; functions with Dillon exponent; Walsh-Hadmard transform; Kloosterman sums

猜你喜欢

密码学布尔刻画
Artin单群的一种刻画
图灵奖获得者、美国国家工程院院士马丁·爱德华·海尔曼:我们正处于密钥学革命前夕
布尔和比利
布尔和比利
布尔和比利
布尔和比利
刻画细节,展现关爱
密码学课程教学中的“破”与“立”
应用型本科高校密码学课程教学方法探究
ℬ(ℋ)上在某点处左可导映射的刻画