μ 阿片受体参与吗啡耐受的角色初探*
2015-12-09陈宜恬杜俊英房军帆方剑乔
陈宜恬,梁 宜,2△,杜俊英,2,房军帆,方剑乔,2
(1.浙江中医药大学第三临床医学院针灸神经生物学实验室,浙江杭州310053;2.浙江中医药大学附属第三医院,浙江杭州310005)
阿片类药物常用于缓解疼痛以及疼痛引发的并发症状,是至今最有效的止痛剂,也是现阶段治疗癌痛的主要药物[1]。然而,吗啡长期使用后产生的成瘾和耐受也限制了其临床效用。μ 阿片受体(Muopioid receptor,MOR)是吗啡的主要作用受体,是G蛋白偶联受体(G-protein-couled receptors,GPCRs)家族中的成员之一。下面就MOR 参与吗啡耐受的角色进行探讨。
1 MOR 的分型和分布
MOR 有7 个跨膜螺旋片段,1 个细胞外的氨基端区域和1 个细胞内的羧基端尾区[2],目前已发现MOR 有μ1 型和μ2 型[3]。有研究发现,μ1 型阿片受体在脊髓及脊髓上水平均起镇痛作用,而μ2 型阿片受体只在脊髓水平发挥其镇痛作用[4]。
MOR 在中枢神经系统分布广泛,在三叉神经核、楔状核、丘脑和延脑侧正中部、蓝斑、导水管周围灰质及脊髓背角浅层等处均有分布,其中在中脑和下丘脑表达最多,而在海马、纹状体和脑皮层中表达量较少,在小脑没有检测到MOR mRNA 的存在[4-5];在外周神经系统中,MOR 主要分布在背根神经节小型神经元细胞膜表面[6]。MOR 与阿片肽的结合部位-在脑内的分布与痛觉通路平行[7]。此外,研究发现在大鼠皮肤无髓鞘神经纤维和胶质细胞中也有MOR 的表达[8-9]。
2 MOR 活化产生镇痛
MOR 活化能产生显著的镇痛效应。研究发现,在正常组织中仅检测极其少量的MOR,MOR 预先存在于外周神经末梢中,但未被激活,但在炎症反应后数分钟至数小时即可检测大量MOR 聚集,MOR 被激活发挥镇痛作用[8]。而在MOR 基因敲除的小鼠中,吗啡的镇痛作用基本消失,所以吗啡作为一种阿片受体的强有力的激动剂,主要是通过激活MOR 发挥其镇痛作用[10]。MOR 的跨膜螺旋片段和吗啡等MOR 激动剂结合后,会激活GTP 结合蛋白(主要是Gi/o 蛋白),通过引起的一系列变化,降低神经元的兴奋性,从而抑制伤害性信息的传递,达到了镇痛的作用[11]。
3 吗啡耐受后MOR 的改变
吗啡耐受发生后MOR 与G 蛋白的耦联发生了改变,吗啡仍能通过和MOR 相结合来引起神经元的反应,但此时吗啡激活的G 蛋白已经不单是Gi/o,更多的是激活了兴奋性的Gs 蛋白,从而激活兴奋性信号通路,产生cAMP,对抗了吗啡的镇痛效力[12]。吗啡耐受的形成过程中通常伴随着MOR数量的变化,MOR 数量变化以胞膜和胞内的MOR数量变化为特征。在体外中慢性给予阿片受体激动剂会引起MOR 的下调,但是体内实验中却不能得到与体外实验相似的结果,不同研究部位MOR 上调、下调及数量无明显变化均有报道[13-15],因此,很难评估MOR 数量的变化在介导吗啡耐受中的作用。有人认为,MOR 也许是通过与下游信号传导系统脱耦联的方式以介导吗啡耐受,而与单独受体丢失关联不大[12]。而研究发现,MOR 的失敏及复敏与吗啡耐受的关系最为密切,MOR 失敏能够促进吗啡耐受的产生,复敏能够对抗吗啡耐受。
3.1 MOR 失敏促进吗啡耐受
长期应用阿片类激动剂,引起阿片受体磷酸化,与抑制性G 蛋白脱偶联,阿片受体对阿片肽不再敏感,吗啡的镇痛作用减弱,即为受体失敏。阿片受体的失敏是机体对阿片类药物产生耐受性的主要分子机制之一[16]。MOR 磷酸化和失敏至少是通过两个截然不同的生化途径:一是激动剂诱导的受体直接磷酸化;二是第二信使激酶中的PKC 诱导的失敏[17]。同时,MOR-DOR 异体二聚物及其他因子也可以促进MOR 失敏,继而促进吗啡耐受的产生。
3.1.1 MOR 磷酸化诱导MOR 失敏
激动剂激活MOR 后,在蛋白激酶C(Protein kinase C,PKC)的作用下,诱导MOR 磷酸化和失敏;在G 蛋白偶联受体激酶(G-protein-coupled receptor kinases,GRKs)的作用下,诱导MOR 磷酸化,继而可引起MOR 的失敏和内吞。MOR 的羧基端末梢约有20 个磷酸化位点,这些位点的磷酸化对MOR 功能调节起着重要的作用。如MOR Ser344、Ser363 和Thr370 位点是PKC 介导的失敏的磷酸化位点[18-20],但是也有研究发现Ser363 位点的MOR磷酸化在没有激动剂诱导的情况下也能够发生[21];MOR Ser394、Ser375 及Ser355/Thr357 是GRK 磷酸化介导的失敏的磷酸化位点[22];Ser266 是钙离子/钙调素依赖性蛋白激酶II(Ca2+/Calmodulin-dependent Protein Kinase,CaMKII)介导的失敏的磷酸化位点[23]。
3.1.2 PKC 途径介导的MOR 失敏
研究发现吗啡主要通过PKC 途径诱导MOR失敏[24],而PKC 介导的MOR 失敏可能与其诱导MOR 磷酸化,从而降低了MOR 偶联G 蛋白的能力有关[25]。吗啡耐受后PKC 从胞浆转位至胞膜,转位后的PKC 被激活[26],参与了MOR 的磷酸化和失敏。Bailey[27]等发现,PKC 的激活能够引起大鼠蓝斑核MOR 的快速失敏,PKC 途径导致的MOR 失敏主要有直接和间接两种:PKC 激活能降低MOR 偶联G蛋白的能力,直接诱导MOR 磷酸化,此时的MOR还在细胞膜上,继而在arrestin 和网格蛋白参与下,使MOR 功能丧失;同时PKC 能诱导G 蛋白信号调节蛋白(Regulator of G-protein signaling,RGS)[28-29]和GRK2[30]的磷酸化,从而导致了MOR 的失敏。基因敲除PKC 或者应用PKC 抑制剂能翻转吗啡诱导的MOR 脱敏及吗啡耐受形成[20,24,31]。
而由GRK 通路诱导MOR 的磷酸化可以促进MOR 的内吞和复敏,MOR 重新发挥作用,继而对抗吗啡耐受;部分MOR 会在内吞后经溶酶体降解[32]。
3.1.3 MOR-DOR 异体二聚物
研究发现,敲除DOR 小鼠不会出现吗啡耐受[33],与此同时,也有研究发现慢性吗啡处理会上调DOR[34],且会导致MOR 对吗啡的反应性发生改变[35]。由此,我们可以认为,DOR 在吗啡耐受中也起发挥着重要的作用。Gomes 等[36]通过研究证明了MOR 和DOR能发生直接的互相作用,从而形成异体二聚物。DOR 被转运至细胞膜后会与MOR 进行异体寡聚,形成新的信号转导复合物[37],促进吗啡耐受的形成。MOR-DOR 异体二聚物是由保持本身结构完整性的MOR 和DOR 单体聚合而成[38],使用吗啡后,在PKC 的影响下,该异体二聚物会招募β-arrestin2,继而引起有丝分裂原激活蛋白激酶及其下游酶的激活和细胞外信号调节激酶1/2(extracellular signal-regulated kinases 1 and 2,ERK1/2)的磷酸化[39-41],磷酸化后的ERK 被限制在细胞质,导致了不同的下游激酶和转录因子的激活[41],从而促进了吗啡耐受的形成。另外,研究也发现DOR 被转运至胞膜后,会发生降解,MOR 也会受到“牵连”而发生降解,促进吗啡耐受的形成[12]。
3.1.4 其他因子
另外,钙离子/钙调素依赖性蛋白激酶II(Ca2+/Calmodulin-dependent Protein Kinase,CaMKII)、丝裂元活化蛋白激酶(Mitogen-Activate Protein Kinase,MAPK)介导的MOR 磷酸化在MOR 失敏中也发挥了重要的作用。在CaMKII 介导的MOR 磷酸化可以引起MOR 失敏,从而促进吗啡耐受的形成,CaMKII 抑制剂能对抗这一作用。MAPK 与MOR 可以相互影响,MOR 活化能够促进MAPK 磷酸化,特别是ERKs[42],而MAKP 通路的激活也可以介导MOR 的失敏,抑制其激活可以促进MOR 磷酸化和内吞,对抗吗啡耐受的形成[43]。
3.2 MOR 复敏对抗吗啡耐受
失敏后的MOR,脱离胞膜进入胞浆,不再发挥作用,继而招募β-arrestin 而发生内吞[44],内吞后的MOR 脱磷酸化,重新回到胞膜而发挥作用,这个过程是MOR 的复敏。MOR 的复敏保证了MOR 能够的功能恢复,MOR 内吞是其复敏的关键第一步。
3.2.1 MOR 内吞和复敏的过程
MOR 内吞是一个快速的过程,在受体和配体结合后几分钟之内就会发生。新近的研究也表明,MOR 内吞可作为一种保护措施,抑制吗啡耐受的形成[45-46]。已有研究证实,慢性应用吗啡引起MOR 受体内吞和失敏的能力极弱,同时也降低或不引起内吞后MOR 动态循环复敏到细胞膜上[47],从而导致了吗啡耐受的出现。MOR 失敏后,从胞膜进入胞浆,在β-arrestin 和网格蛋白的作用下,形成内吞小囊泡[47],完成内吞过程。内吞后的MOR 有2 种结局:一部分MOR 被溶酶体内的蛋白酶降解[47];另一部分内吞的受体发生脱磷酸化,与激动剂分离,重新回到膜上,发挥正常的功能此为受体的复苏[48],即MOR 复敏。复敏后的MOR 重新发挥其作用,所以我们认为MOR 的复敏可以有效对抗吗啡耐受[49-50]。内吞还避免了Gs 信号通路的过度激活,避免了MOR 的功能发生改变,从而进一步抑制了耐受的发生[51]。
3.2.2 MOR 内吞和吗啡耐受的关系
受体的内吞被认为是受体急性失敏的重要机制,而受体的磷酸化是内吞的重要环节,而受体复敏是受体内吞后的转归之一。由GRK 和β-arrestin介导的MOR 磷酸化和失敏可以引起MOR 的内吞[52-53],MOR 重新回到胞膜上[47],继续发挥其作用,从而对抗吗啡耐受。另外,MOR 内吞限制了AC 的产生,避免了cAMP 的超活化,从而抑制了吗啡耐受的产生。
为了更好地说明不同激动剂对MOR 内吞的影响,现很多研究者都采用了RAVE(Relative Activation Versus Endocytosis)的概念[54]。RAVE 即激动剂激活受体的效力和引起受体内吞的能力。激活受体能力强同时又易致内吞的为低RAVE 激动剂,而激活受体能力强同时却不易致内吞的为高RAVE 激动剂,吗啡属于高RAVE 激动剂[55]。在离体和在体的实验研究中,急性或慢性的吗啡作用可以引起极其少量MOR 的内吞[56]。Wang HL[57]发现,在GRK2或β-arrestin 过表达的神经元中,吗啡能引起MOR的内吞。由此我们可以认为,GRK 和β-arrestin 的表达过低可能是吗啡较难引起MOR 内吞的原因。同时,PKC 介导的MOR 磷酸化也能抑制MOR 的内吞,而PKC 抑制剂Calphostin C 能引发MOR 内吞[58]。并且研究者发现可以通过药理学方法,如吗啡联合能够DAMGO [(D-ala2,N-me-phe4,gly5-ol)-enkephalin]或美沙酮,促使能够促进MOR 内吞[59]。
4 展望
吗啡耐受是疼痛治疗过程中的疑难问题,它严重限制了吗啡类药物的临床应用;而MOR 作为吗啡主要激活的阿片受体,在吗啡镇痛和耐受中都发挥了重要作用。长期大量应用吗啡后,MOR 失敏会加速吗啡耐受的出现,而MOR 的内吞作为一种保护机制,能够拮抗吗啡耐受的形成,并且内吞后的MOR 一部分被溶酶体降解,还有一部分可以回到细胞膜,复敏以发挥其作用。通过这个过程,受体避免了持续刺激,从而避免了受体发生长时间的失敏。可想而见,我们可以从抑制MOR 失敏、加强MOR内吞及促进MOR 复敏方面,寻找消除吗啡耐受的靶点。
[1] Grant M,Ugalde A,Vafiadis P,et al. Exploring the myths of morphine in cancer:views of the general practice population[J]. Support Care Cancer,2014,Epub ahead of print.
[2] Dhawan B N,Cesselin F,Raghubir R,et al. International Union of Pharmacology. XII. Classification of opioid receptors[J]. Pharmacol Rev,1996,48(4):567-592.
[3] Pasternak G W. Insights into mu opioid pharmacology the role of mu opioid receptor subtypes [J]. Life Sci,2001,68(19-20):2213-2219.
[4] Back S K,Lee J,Hong S K,et al. Loss of spinal mu-opioid receptor is associated with mechanical allodynia in a rat model of peripheral neuropathy[J]. Pain,2006,123(1-2):117-126.
[5] Wang C,Shu S Y,Guo Z,et al. Immunohistochemical localization of mu opioid receptor in the marginal division with comparison to patches in the neostriatum of the rat brain[J].J Biomed Sci,2011,18:34.
[6] Hervera A,Negrete R,Leanez S,et al. Peripheral effects of morphine and expression of mu-opioid receptors in the dorsal root ganglia during neuropathic pain:nitric oxide signaling[J]. Mol Pain,2011(7):25.
[7] Arvidsson U,Riedl M,Chakrabarti S,et al. Distribution and targeting of a mu-opioid receptor (MOR1)in brain and spinal cord [J]. The Journal of Neuroscience,1995,15(5):3328-3341.
[8] Patierno S,Anselmi L,Jaramillo I,et al. Morphine induces mu opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation [J]. Gastroenterology,2011,140(2):618-626.
[9] Talbot J N,Roman D L,Clark M J,et al. Differential modulation of mu-opioid receptor signaling to adenylyl cyclase by regulators of G protein signaling proteins 4 or 8 and 7 in permeabilised C6 cells is Galpha subtype dependent [J]. J Neurochem,2010,112(4):1026-1034.
[10] Chen S L,Ma H I,Han J M,et al. Antinociceptive effects of morphine and naloxone in mu-opioid receptor knockout mice transfected with the MORS196A gene [J]. J Biomed Sci,2010,17:28.
[11] Simon E J. Subunit structure and purification of opioid receptors[J]. J Recept Res,1987,7(1-4):105-132.
[12] 刘海青,白波. 阿片类药物成瘾的受体机制研究进展[J].中华行为医学与脑科学杂志,2011,20(6):571-573.
[13] Kao JH,Gao MJ,Yang PP,et al. The effect of naltrexone on neuropathic pain in mice locally transfected with the mutant mu-opioid receptor gene in spinal cord. [J]. Br J Pharmacol,2014,Epub ahead of print.
[14] Li G,Ma F,Gu Y,et al. Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery [J].Mol Pain,2013,9(63):1-10.
[15] Fernandez-Duenas V,Pol O,Garcia-Nogales P,et al. Tolerance to the antinociceptive and antiexudative effects of morphine in a murine model of peripheral inflammation[J].J Pharmacol Exp Ther,2007,322(1):360-368.
[16] Williams JT,Ingram SL,Henderson G,et al. Regulation of μ-opioid receptors:desensitization,phosphorylation,internalization,and tolerance[J]. Pharmacol Rev,2013,65(1):223-254.
[17] Yu Y,Zhang L,Yin X,et al. Mu opioid receptor phosphorylation,desensitization,and ligand efficacy [J]. J Biol Chem,1997,272(46):28869-28874.
[18] El Kouhen R,Burd A L,Erickson-Herbrandson L J,et al.Phosphorylation of Ser363,Thr370,and Ser375 residues within the carboxyl tail differentially regulates mu-opioid receptor internalization [J]. J Biol Chem,2001,276(16):12774-12780.
[19] Law P,Loh H,Wei L-N. Insights into the receptor transcription and signaling:implications in opioid tolerance and dependence [J]. Neuropharmacology,2004,47:300-311.
[20] Feng B,Li Z,Wang J B. Protein kinase C-mediated phosphorylation of the mu-opioid receptor and its effects on receptor signaling[J]. Mol Pharmacol,2011,79(4):768-775.
[21] Burd A L,El-Kouhen R,Erickson L J,et al. Identification of serine 356 and serine 363 as the amino acids involved in etorphine-induced down-regulation of the mu-opioid receptor[J]. J Biol Chem,1998,273(51):34488-34495.
[22] Wang H L. A cluster of Ser/Thr residues at the C-terminus of mu-opioid receptor is required for G protein-coupled receptor kinase 2-mediated desensitization[J]. Neuropharmacology,2000,39(3):353-363.
[23] Narita M,Matsumura Y,Ozaki S,et al. Role of the calcium/calmodulin-dependent protein kinase ii(CaMKII)in the morphine -induced pharmacological effects in the mouse[J]. Neuroscience,2004,126(2):415-421.
[24] Bailey C P,Oldfield S,Llorente J,et al. Involvement of PKC alpha and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of mu-opioid receptors in mature brain neurons [J]. Br J Pharmacol,2009,158(1):157-164.
[25] Bailey C P,Llorente J,Gabra B H,et al. Role of protein kinase C and mu-opioid receptor(MOPr)desensitization in tolerance to morphine in rat locus coeruleus neurons[J].Eur J Neurosci,2009,29(2):307-318.
[26] Griner E M,Kazanietz M G. Protein kinase C and other diacylglycerol effectors in cancer[J]. Nat Rev Cancer,2007,7(4):281-294.
[27] Bailey C P,Kelly E,Henderson G. Protein kinase C activation enhances morphine-induced rapid desensitization of μ-opioid receptors in mature rat locus ceruleus neurons[J].Molecular pharmacology,2004,66(6):1592-1598.
[28] Garzon J,Rodriguez-Munoz M,Sanchez-Blazquez P. Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter [J]. Neuropharmacology,2005,48(6):853-868.
[29] Clark M J,Traynor J R. Endogenous regulator of g protein signaling proteins reduce mu-opioid receptor desensitization and down-regulation and adenylyl cyclase tolerance in C6 cells[J]. J Pharmacol Exp Ther,2005,312(2):809-815.
[30] Rodríguez -Muñoz M,Sánchez -Blázquez P,Vicente -Sánchez A,et al. The mu-opioid receptor and the NMDA receptor associate in PAG neurons:implications in pain control[J]. Neuropsychopharmacology,2012,37(2):338-349.
[31] Huo YP1,Hong YG. Protein kinase C and morphine tolerance [J]. Sheng Li Ke Xue Jin Zhan,2011,42(6):423-426.
[32] Hull L C,Llorente J,Gabra B H,et al. The effect of protein kinase C and G protein-coupled receptor kinase inhibition on tolerance induced by mu-opioid agonists of different efficacy [J]. J Pharmacol Exp Ther,2010,332(3):1127-1135.
[33] Nitsche J F,Schuller A G,King M A,et al. Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice[J]. J Neurosci,2002,22(24):10906-10913.
[34] Cahill C M,Morinville A,Lee M C,et al. Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception[J]. J Neurosci,2001,21(19):7598-7607.
[35] Guan J S,Xu Z Z,Gao H,et al. Interaction with vesicle luminal protachykinin regulates surface expression of deltaopioid receptors and opioid analgesia [J]. Cell,2005,122(4):619-631.
[36] Gomes I,Gupta A,Filipovska J,et al. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia [J]. Proc Natl Acad Sci U S A.,2004,101(14):5135-5139.
[37] Fan T,Varghese G,Nguyen T,et al. A role for the distal carboxyl tails in generating the novel pharmacology and G protein activation profile of mu and delta opioid receptor hetero-oligomers[J]. J Biol Chem,2005,280(46):38478-38488.
[38] Snook L A,Milligan G,Kieffer B L,et al. Mu-delta opioid receptor functional interaction:Insight using receptor-G protein fusions [J]. J Pharmacol Exp Ther,2006,318(2):683-690.
[39] Belcheva M M,Clark A L,Haas P D,et al. Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes[J]. J Biol Chem,2005,280(30):27662-27669.
[40] Bilecki W,Zapart G,Ligeza A,et al. Regulation of the extracellular signal-regulated kinases following acute and chronic opioid treatment [J]. Cell Mol Life Sci,2005,62(19-20):2369-2375.
[41] Rozenfeld R,Devi L A. Receptor heterodimerization leads to a switch in signaling:beta-arrestin2-mediated ERK activation by mu -delta opioid receptor heterodimers [J].FASEB J,2007,21(10):2455-2465.
[42] Niikura K,Narita M,Butelman E R,et al. Neuropathic and chronic pain stimuli downregulate central mu-opioid and dopaminergic transmission [J]. Trends Pharmacol Sci,2010,31(7):299-305.
[43] 张颜波,孙保亮,袁慧,等. 丝裂原活化的蛋白激酶通路与吗啡耐受[J]. 基础医学与临床,2010(3):325-328.
[44] Dang V C,Chieng B,Azriel Y,et al. Cellular morphine tolerance produced by βarrestin-2-dependent impairment of μ-opioid receptor resensitization[J]. The Journal of Neuroscience,2011,31(19):7122-7130.
[45] He L,Whistler JL. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis [J]. PLoS One,2011,6(5):e19372.
[46] He L,Kim JA,Whistler JL. Biomarkers of morphine tolerance and dependence are prevented by morphine-induced endocytosis of a mutant mu-opioid receptor [J]. FASEB J,2009,23(12):4327-4334.
[47] Sternini C,Brecha N C,Minnis J,et al. Role of agonist-dependent receptor internalization in the regulation of mu opioid receptors[J]. Neuroscience,2000,98(2):233-241.
[48] von Zastrow M,Svingos A,Haberstock -Debic H,et al.Regulated endocytosis of opioid receptors:cellular mechanisms and proposed roles in physiological adaptation to opiate drugs[J]. Curr Opin Neurobiol,2003,13(3):348-353.
[49] Koch T,Widera A,Bartzsch K,et al. Receptor endocytosis counteracts the development of opioid tolerance [J]. Mol Pharmacol,2005,67(1):280-287.
[50] Whistler J L,Chuang H H,Chu P,et al. Functional dissociation of mu opioid receptor signaling and endocytosis:implications for the biology of opiate tolerance and addiction[J]. Neuron,1999,23(4):737-746.
[51] Shen K F,Crain S M. Cholera toxin-B subunit blocks excitatory effects of opioids on sensory neuron action potentials indicating that GM1 ganglioside may regulate Gslinked opioid receptor functions [J]. Brain Res,1990,531(1-2):1-7.
[52] Li J,Xiang B,Su W,et al. Agonist-induced formation of opioid receptor-G protein-coupled receptor kinase(GRK)-G beta gamma complex on membrane is required for GRK2 function in vivo [J]. J Biol Chem,2003,278(32):30219-30226.
[53] Dang V C,Chieng B,Azriel Y,et al. Cellular morphine tolerance produced by betaarrestin-2-dependent impairment of mu -opioid receptor resensitization [J]. J Neurosci,2011,31(19):7122-7130.
[54] Grecksch G,Bartzsch K,Widera A,et al. Development of tolerance and sensitization to different opioid agonists in rats[J]. Psychopharmacology(Berl),2006,186(2):177-184.
[55] Martini L,Whistler J L. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence[J]. Curr Opin Neurobiol,2007,17(5):556-564.
[56] Celver J,Xu M,Jin W,et al. Distinct domains of the mu-opioid receptor control uncoupling and internalization[J].Mol Pharmacol,2004,65(3):528-537.
[57] Wang H. A cluster of Ser/Thr residues at the C-terminus of μ-opioid receptor is required for G protein-coupled receptor kinase 2-mediated desensitization[J]. Neuropharmacology,2000,39(3):353-363.
[58] Ueda H,Inoue M,Matsumoto T. Protein kinase C-mediated inhibition of mu-opioid receptor internalization and its involvement in the development of acute tolerance to peripheral mu-agonist analgesia [J]. J Neurosci,2001,21(9):2967-2973.
[59] He L,Fong J,von Zastrow M,et al. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization[J]. Cell,2002,108(2):271-282.