DnaJ-like蛋白在植物胁迫应答中的作用及机制研究进展
2015-12-03黄守程叶梅荣刘爱荣安徽科技学院生命科学学院安徽凤阳233100
黄守程,叶梅荣,刘爱荣 (安徽科技学院生命科学学院,安徽 凤阳233100)
张远兵 (安徽科技学院城建与环境学院,安徽 凤阳233100)
植物在生长发育的过程中会遭受多种环境因子胁迫,如高(低)温、强(弱)光、干旱(洪水)、高盐、重金属、病原菌(或病毒)侵染等,当这些因素造成的影响超过一定的限度就会对植物的生长发育产生伤害[1]。胁迫导致植物生长状况的改变和代谢的失衡,进而引起植物通过改变体内的代谢途径来进行胁迫应答[2]。热激蛋白(heat-shock proteins,HSPs)是生物遭受胁迫(如干旱、低温、重金属离子等)之后大量产生的一类特殊蛋白质[3],HSPs在结构上极为保守,具有分子伴侣功能,参与生物体内新生肽的运输、折叠、组装、定位以及变性蛋白的复性和降解[4]。DnaJ(HSP40)是最早在Escherichiacoli中发现的一种调节蛋白[5]。现已发现动物、植物以及真菌中广泛存在与DnaJ功能相似的蛋白,称为DnaJ-like蛋白[6~8]。DnaJ-like蛋白广泛分布于细胞内多个细胞器,如细胞质、细胞膜、叶绿体、线粒体、内质网、细胞核、液泡以及细胞骨架[9],参与植物的形态建成[10]、叶绿体运动[11]以及多种胁迫应答反应[12~14]。大量研究表明,DnaJ-like蛋白在植物的生物与非生物胁迫中具有非常重要的作用。
1 DnaJ蛋白的结构及功能
DnaJ是一种重要的分子伴侣蛋白,DnaJ结构域是一个大约由70个氨基酸组成保守结构域,其核心结构是His/Pro/Asp三肽[15]。一般包含4个功能域:N-末端保守的J功能域(J domain)、富含甘氨酸结构域(G/P domain)、含4个CXXCXGXG重复基序的中央富含Cys区域(CRR domain)以及1个由120~170氨基酸组成的C-端低同源结构域(CTD domain)[16]。根据结构的不同,DnaJ蛋白家族成员可分为3种类型:类型I——同时含有J、G/P和CRR等3个结构域,类型II——含有J、G/P等2个结构域,类型Ⅲ——只含有J结构域[17]。CRR domain中的2个锌原子与4个半胱氨酸残基形成锌指结构域,协助DnaJ蛋白特异性地识别并结合到变性的蛋白质底物上[18,19]。
DnaJ蛋白在维持胁迫条件下细胞内蛋白质的稳态以及蛋白复合体的稳定性方面具有重要作用[12]。HSPA70(DnaK)是一类重要的分子伴侣,在生物与非生物胁迫中具有极其重要的作用,被称为胁迫蛋白,但其活性受到DnaJ蛋白的调节[20]。DnaJ蛋白的J domain是主要的功能域,促进HSP70的ATPase活性,调节蛋白复合体的折叠、组装与解聚[17],而这一过程需要DnaJ、GrpE和DnaK的共同协作才得以完成。DnaJ能够增强DnaK与其底物的亲和性,促进与底物的结合并形成DnaJ-substrate-DnaK-ATP复合体[21],最后在GrpE的协助下,利用ATP水解,促进DnaK的释放,重新参与循环[22](图1)。
图1 DnaJ与Hsp70相互作用
2 Dnaj-like蛋白的亚细胞定位及其作用机制
Dnaj-like蛋白广泛存在于生物体中。例如,酿酒酵母(Saccharomycescerevisiae)中有22个J蛋白,而拟南芥中则存在120个J蛋白[9]。DnaJ蛋白的功能与其在细胞内的定位有关。计算机模拟分析发现拟南芥J蛋白分布于不同的亚细胞结构中。在120个J蛋白中,其中50个定位于胞质溶胶,19个定位于线粒体,12个定位于叶绿体,9个定位于内质网,3个在细胞骨架,1个在细胞质膜,2个在液泡,其余24个定位于细胞核[9]。
DnaJ蛋白参与多肽链的装配和运输。胞质溶胶中与核糖体结合的J蛋白能够阻止多肽链合成过程中的肽链聚合,从而保护蛋白质的合成[23]。atDjB8与酵母钙调素结合蛋白(Caj1)是同源蛋白,在核转运和RNA剪接中具有重要作用[24]。atDjC22是酵母Erj5的同源基因,参与内质网蛋白折叠和未折叠蛋白反应(unfolded protein response)[25]。atDjC20和atDjC21是酵母Sec63的同源蛋白,与内质网蛋白的转运有关[26]。蛋白质前体(preprotein)进入线粒体基质是由线粒体内膜上的J蛋白——Pam18和Pam16与 Hsp70互作介导的[27,28]。
DnaJ蛋白影响mRNA的剪接或small RNA的合成。大豆DnaJ-like蛋白——GmHSP40.1,与HcRed-SE和SR33-YFP共表达于细胞核中,参与pre-mRNA的剪切和mRNA的成熟,或者参与small RNA的生物合成[29]。DnaJ蛋白还可以调控主宰酶(H+-ATPase)的活性。质膜H+-ATPase(PM H+-ATPase)在细胞许多生命活动过程中具有重要作用。PKS5负调控质膜H+-ATPase活性,研究发现拟南芥J3蛋白能够通过与PKS5激酶互作并抑制其活性,进而正调控质膜H+-ATPase的活性[13]。
Dnaj-like蛋白参与信号的转导过程。atDjC18是一个auxilin-like J蛋白(JAC1),调控向光素介导的叶绿体运动,从而参与光信号的转导。Chen等[30]发现拟南芥的1个叶绿体DnaJ-like蛋白—AtJ8,该蛋白基因在强光下表达完全受抑,而仅在弱光及黑暗下表达,且其表达可在光/暗条件下发生转换,表明其可能与植物光周期有关。细胞骨架是重力信号感受器,atDjB11(ARG1)、atDjB12(ARL1)和atDjB13(ARL2)与细胞骨架相互作用而参与重力信号的转导[31,32],进一步的研究表明,ARG1和ARL2通过降低胞质H+浓度和影响生长素的分布来参与重力感知细胞的早期向地性信号转导[33]。内质网参与细胞内蛋白质正常的折叠与修饰,逆境导致内质网积累大量未折叠的蛋白质,损害细胞的功能。当植物处于胁迫环境下,DnaJ蛋白与内质网分子伴侣binding immunoglobulin protein(BIP)相互作用[34,35],激活内质网胁迫感受器(ER stress sensors),释放膜相关转录因子bZIP28并离开内质网,在高尔基体内被水解释放出转录激活域,然后进入细胞核调控胁迫响应基因的表达[36]。
3 DnaJ-like蛋白在植物生物与非生物胁迫中的作用
3.1 DnaJ-like蛋白在植物生物胁迫(biotic stress)中的作用
研究表明,DnaJ-like蛋白在植物的防御中具有多种重要作用。Liu等[29]研究发现,大豆J domain类型的DnaJ-like的蛋白GmHSP40.1在烟草(Nicotianabenthamiana)中过表达导致烟草叶片的过敏性细胞死亡;该蛋白基因定位于细胞核,GmHSP40.1的沉默导致大豆对花叶病毒(Soybean mosaic virus)的敏感性增强,表明GmHSP40.1在大豆细胞死亡以及抗病反应中具有关键作用。Tobacco stress-induced1(Tsi1)是一个乙烯响应因子结合蛋白/AP2类型的转录因子。Tsi1-interacting protein1(Tsip1)是一个DnaJ-like锌指蛋白,能够与Tsi1相互作用;水杨酸、乙烯、赤霉素、NaCl以及病毒处理均能促进Tsip1的转录水平;转基因烟草中共表达Tsip1和Tsi1能显著增强对病原菌以及盐胁迫的抗性[37]。Hofius等[38]研究发现烟草马铃薯Y病毒(PVY)的衣壳蛋白(capsid protein,CP)能够与一系列DnaJ-like蛋白(NtCPIPs)相互作用,过表达NtCPIP1和NtCPIP2a的J-domain缺失突变体能显著增强转基因烟草对PVY的抵抗能力,表明NtCPIPs介导了烟草对PVY的易感性。Susanne等[39]鉴定出1个番茄(Lycopersiconesculentum)DnaJ-like蛋白基因,受番茄斑萎病毒(tomato spotted wilt virus,TSWV)诱导而上调表达。有趣的是,该DnaJ-like蛋白缺乏CRR结构域,而含有1个赖氨酸富集结构域(KXXXKE/K)。进一步的研究表明,该DnaJ-like蛋白介导了病毒蛋白在宿主体内的移动。同样地,烟草DnaJ-like蛋白NtMPIP1通过与烟草花叶病毒(tobacco mosaic virus,TMV)的运动蛋白(movement protein,MP)相互作用,促进病毒在植物体内细胞之间的扩散转移(cell-tocell spread),而NtMPIP1基因的沉默则显著抑制TMV的体内扩散[40]。在茉莉酸介导的油菜(Brassicajuncea)防御反应中,DnaJ-like蛋白表达上调,并协同其他胁迫应答基因,对减少油菜芥末蚜虫[Lipaphiserysimi(Kalt.)]的数量有重要作用[41]。Wang等[42]发现了1个番茄叶绿体的 DnaJ-like蛋白(LeCDJ2),受到水杨酸、干旱以及病原菌的诱导表达,过表达LeCDJ2基因显示出对青枯假单胞杆菌(Pseudomonassolanacearum)的抗性。有意思的是,HopI1是丁香假单胞菌(Pseudomonassyringae)的毒性效应器,是一个DnaJ-like蛋白,在拟南芥中表达该基因,发现其定位于叶绿体并能导致类囊体变长以及基粒肿胀,抑制叶绿体水杨酸积累,进而抑制水杨酸介导的防御反应[43]。综上所述,DnaJ-like蛋白具有差异化的防御能力,有的能够增强植物的抗病反应能力,而有的则降低了植物的抗病反应能力,增强了植物对病原菌的易感性。
3.2 DnaJ-like蛋白在植物非生物胁迫(abiotic stress)中的作用
3.2.1 温度胁迫
Rampuria等[44]通过SSH文库分析筛选出一个DnaJ-like蛋白(JK266046),半定量PCR分析显示该蛋白在42℃热处理5min表达量是对照的10倍。Kong等[12,45]研究发现一个叶绿体的DnaJ蛋白(LeCDJ1)能促进转基因番茄的耐高温能力,同时能够增强低温下光合膜的稳定性。AtDjB1属于拟南芥DnaJ/J-domain的蛋白家族的一个成员,能够保护细胞,防止高温胁迫诱发的活性氧造成的氧化损伤,从而提高拟南芥的耐热性[14]。大豆GmDjp1编码1个J domain类型的DnaJ-like蛋白,定位于细胞核,其转录水平受高温、低温、脱水等多种胁迫的诱导而上升,异源表达能够显著提高大肠杆菌(E.coli)的耐热性,表明该基因在响应高温及其他非生物胁迫中具有重要作用[46]。相反地,定位于细胞核的拟南芥AtDjC53基因,编码1个J domain类型的蛋白,负调控拟南芥的耐热性,其机制可能是AtDjC53的表达导致一些关键的HSP基因(如Hsp25.3-P和 Hsa32)表达受抑[47]。
3.2.2 水分和盐胁迫
利用cDNA芯片技术,Schafleitner等[48]鉴定出6个DnaJ-like蛋白均受到到水分胁迫的诱导而上调表达,其作用可能是维持干旱胁迫下细胞内蛋白组分的稳定性,从而减轻细胞的损伤。应用同样的方法,Rodrigues等[49]从甘蔗中筛选出3个DnaJ-like蛋白,对其中1个DnaJ-like蛋白基因的表达进行RT-qPCR验证发现该基因在耐旱品种中下调表达,而在不耐旱品种中则上调表达,这表明不同的基因型背景导致了基因表达差异,而这种差异可能是适应水分胁迫的选择性表达策略。桉树(Eucalyptus camaldulensis)在水分胁迫下的转录组分析也筛选出的1个DnaJ-like蛋白,其3个等位基因的表达差异极其显著,个别等位基因在胁迫下表达量提高100多倍[50]。Wang等[51]研究发现,DnaJ-like蛋白基因AtDjB1敲除的拟南芥(atj1-1)具有较高的葡萄糖水平,以致于植物对ABA敏感性增强,从而提高了植物对渗透胁迫的抵抗能力。定位于番茄叶绿体的DnaJ-like蛋白(LeCDJ2),异源表达显著提高烟草的抗旱能力,并且通过维持PSII D1蛋白的稳定来减轻光抑制[42]。Zhao等[52]研究表明,拟南芥的DnaJ蛋白的原核表达能够提高细菌对盐的耐受性,DnaJ可能在盐胁迫条件下参与了蛋白质的保护,改善了细胞膜膜脂的流动性,从而增加了细菌细胞的活力。
3.2.3 重金属胁迫
研究表明,重金属胁迫抑制分子伴侣辅助的蛋白折叠,从而导致细胞损伤,而DnaJ/Dnak/GrpE分子伴侣系统能够促进蛋白质的重折叠[53]。Chai等[54]从芸豆(Phaseolusvulgaris)中分离出编码1个DnaJ-like蛋白的基因——PvSR6,该蛋白在重金属(Hg、Cd、Cu、Zn和As)胁迫下表达显著增强。Venkatachalam等[55]在重金属富集植物田菁(Sesbaniadrummondii)鉴定出1个Hg2+诱导的DnaJ-like蛋白。Zhen等[56]通过对耐铝大豆种质的2-DE蛋白质组学研究发现了3个DnaJ-like蛋白受铝诱导而强烈表达,其中有2个蛋白是被新诱导表达,另1个蛋白在铝胁迫24、48h和72h的表达量分别是对照的3.75、11.45和9.07倍。Cancado等[57]通过cDNA array方法分离铝胁迫下玉米根系的基因表达差异,也发现了1个在铝抗性及敏感玉米中差异表达的DnaJ-like蛋白。Goodwin等[58]也从拟南芥中分离出1个铝胁迫下差异表达的DnaJ-like蛋白,其表达量是对照的2.76倍。Duressa等[59]研究发现铝抗性大豆(PI 416937)中1个DnaJ-like蛋白,其在铝处理48h和72h后分别上调表达5.32倍和6.45倍。由此可见,DnaJ-like蛋白能够响应重金属离子胁迫,可能参与了毒性的解除,但具体的功能和机制尚不明确。
4 小结与展望
植物在生长发育的过程中不可避免地遭受多种多样环境因子的胁迫,为了适应复杂多变的环境,植物需要适时地作出应激反应。植物可以在多个层次上、通过不同的途径及机制响应生物及非生物胁迫。大量研究表明,分子伴侣参与植物的胁迫应答,DnaJ-like蛋白在植物的生长发育以及胁迫响应过程中具有关键的作用,但是大多数DnaJ蛋白的功能尚不清楚。由于DnaJ-like蛋白种类及功能的多样性,且具有不同的亚细胞定位,DnaJ-like蛋白既可以正调控植物的防御反应,也可以负调控植物的防御反应,这为认识其作用机制带来了难度。
未来的研究应该从以下几个方面进行:首先,通过基于转录组高通量测序技术筛选胁迫相关的差异表达的DnaJ-like蛋白基因,为全面认识其功能奠定基础;其次,通过功能缺失(loss of function)和功能获得(gain of function)以及转基因的研究,深入探究DnaJ-like蛋白的功能及分子机制;最后,筛选关键的靶标基因,为植物的抗性遗传改良提供理论依据。
[1]Bohnert H J,Sheveleva E.Plant stress adaptations-making metabolism move [J].Current Opinion in Plant Biology,1998,1:267~274.
[2]Shulaev V,Cortes D,Miller G,etal.Metabolomics for plant stress response [J].Physiologia Plantarum,2008,132:199~208.
[3]Morimoto R I.Cell in stress:transcription activation of heat shock proteins [J].Science,1993,259:1409~1410.
[4]Martin E F,Gretchen E H.Heat-shock proteins,molecular chaperones,and the stress response-evolutionary and ecological physiology [J].Annual Review Physiology,1999,61:243~282.
[5]Hartl F U,Hlodan R,Langer T.Molecular chaperones in protein folding:the art of avoiding sticky situations [J].Trends in Biochemical Sciences,1994,19:20~25.
[6]Craig E A,Gambill B D,Nelson R J.Heat shock proteins:molecular chaperones of protein biogenesis [J].Microbiological Reviews,1993,57:402~414.
[7]Zhu J K,Shi J,Bressan R A,etal.Expression of anAtriplexnummulariagene encoding aprotein homologous to the bacterial molecular chaperone DnaJ [J].The Plant Cell,1993,5:341~349.
[8]Kazutoyo T,Masaki K,Bernd B,etal.The human DnaJ homologue dj2facilitates mitochondrial protein import and luciferase refolding [J].The Journal of Cell Biology,1997,139:1089~1095.
[9]Rajan V B,D’Silva P.ArabidopsisthalianaJ-class heat shock proteins:cellular stress sensors [J].Functional &Integrative Genomics,2009,9:433~446.
[10]Park Y,Lee S Y,Seok H Y,etal.EMF1interacts with EIP1,EIP6or EIP9involved in the regulation of flowering time inArabidopsis[J].Plant and Cell Physiology,2011,52:1376~1388.
[11]Suetsugu N,Kagawa T,Wada M.An auxilin-like J-domain protein,JAC1,regulates phototropin-mediated chloroplast movement inArabidopsis[J].Plant Physiology,2005,139:151~162.
[12]Kong F,Deng Y,Zhou B,etal.A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress [J].Journal of Experimental Botany,2014,65:143~158.
[13]Yang Y,Qin Y,Xie C,etal.TheArabidopsisChaperone J3regulates the plasma membrane H+-ATPase through interaction with the PKS5kinase [J].The Plant Cell,2010,22:1313~1332.
[14]Zhou W,Zhou T,Li M X,etal.TheArabidopsisJ-protein AtDjB1facilitates thermo tolerance by protecting cells against heat-induced oxidative damage [J].New Phytologist,2012,194:364~378.
[15]Zhao X,Liu X.G,Wang A.R.Bioinformatic analysis of the DnaJ protein family in rice [J].Subtropical Agriculture Research,2011,7:206~211.
[16]Chai T.Y,Zhang Y.X.Advance in DnaJ-like proteins [J].Chinese Bulletin of Life Science,1999,11:172~175.
[17]Walsh P,Bursac D,Law Y C,etal.The J-protein family:modulating protein assembly,disassembly and translocation [J].EMBO Report,2004,5:567~571.
[18]Alexander S,Korszun R,Hartl F U,etal.A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates [J].The EMBO Journal,1996,15:408~417.
[19]Bogdan K,Krzysztof L,Daniel W,etal.Structure-function analysis of the Zinc Finger region of the DnaJ molecular chaperone [J].Journal of Biological Chemistry,1996,271:14840~14848.
[20]Qiu X B,Shao Y M,Miao S,etal.The diversity of the DnaJ/Hsp40family,the crucial partners for Hsp70chaperones [J].Cell Molecular Life Science,2006,63:2560~2570.
[21]Szabo A,Langer T,Schrder H,etal.The ATP hydrolysis-dependent reaction cycle of theEscherichiacoliHsp70system DnaK,DnaJ,and GrpE [J].Proceedings of the National Academy of Sciences,1994,91:10345~10349.
[22]Wawrzyn W A,Banecki B,Wall D,etal.ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates [J].Journal of Biological Chemistry,1995,270:19307~19311.
[23]Craig E A,Eisenman H C,Hundley H A.Ribosome-tethered molecular chaperones:the first line of defense against protein misfolding?[J]Current Opinion in Microbiology,2003,6:157~162.
[24]Sahi C,Craig E.A.Network of general and specialty J protein chaperones of the yeast cytosol[J].Proceedings of the National A-cademy of Sciences,2007,104:7163~7168.
[25]Carla F M,Raden D,Zacchi N,etal.The SaccharomycescerevisiaeYFR041C/ERJ5gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum [J].Biochimica et Biophysica Acta,2007,1773:232~242.
[26]Yamamoto M,Maruyama D,Endo T,etal.Arabidopsisthalianahas a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants [J].Plant and Cell Physiology,2008,49:1547-1562.
[27]D'silva P D,Schilke B,Walter W,etal.J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix [J].Proceedings of the National Academy of Sciences USA,2003,100:13839~13844.
[28]D'silva P R,Schilke B,Walter W,etal.Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane [J].Proceedings of the National Academy of Sciences USA,2005,102:12419~12424.
[29]Liu J,Whitham S A.Overexpression of a soybean nuclear localized type III DnaJ domain-containing HSP40reveals its roles in cell death and disease resistance [J].The Plant Journal,2013,74:110~121.
[30]Chen K M,Piippo M,Holmstr M M,etal.A chloroplast-targeted DnaJ protein AtJ8is negatively regulated by light and has rapid turnover in darkness [J].Journal of Plant Physiology,2011,168:1780~1783.
[31]John C,Sedbrook R C,Patrick H M.ARG1(Altered Response to Gravity)encodes a DnaJ-like protein that potentially interacts with the cytoskeleton [J].Proceedings of the National Academy of Sciences USA,1999,96:1140~1145.
[32]Guan C,Rosen E S,Boonsirichai K,etal.The ARG1-LIKE2gene ofArabidopsisfunctions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway [J].Plant Physiology,2003,133:100~112.
[33]Boonsirichai K,Sedbrook J C,Chen R,etal.ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes [J].The Plant Cell,2003,15:2612~2625.
[34]Jin Y.I,Awad W,Petrova K,etal.Regulated release of ERdj3from unfolded proteins by BiP [J].The EMBO Journal,2008,27:2873~2882.
[35]Shen Y,Meunier L,Hendershot L M.Identification and characterization of a novel endoplasmic reticulum(ER)DnaJ homologue,which stimulates ATPase activity of BiP in vitro and is induced by ER Stress [J].Journal of Biological Chemistry,2002,277:15947~15956.
[36]Srivastava R,Deng Y,Howell S H.Stress sensing in plants by the ER stress sensor transducer,bZIP28 [J].Frontiers in Plant Science,2014,5:1~6.
[37]Ham B K,Park J M,Lee S B,etal.Tobacco Tsip1,a DnaJ-type Zn finger protein,is recruited to and potentiates Tsi1-mediated transcriptional activation [J].Plant Cell,2006,18:2005~2020.
[38]Hofius D,Maier A T,Dietrich C,etal.Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants [J].Journal of Virology,2007,81:11870~11880.
[39]Von Bargen S,Salchert K,Paape M,etal.Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin,kinesin and DnaJ-like chaperones [J].Plant Physiology and Biochemistry,2001,39:1083~1093.
[40]Shimizu T,Yoshii A,Sakurai K,etal.Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus [J].Archives of Virology,2009,154:959~967.
[41]Koramutla M,Kaur A,Negi M,etal.Elicitation of jasmonate-mediated host defense inBrassicajuncea(L.)attenuates population growth of mustard aphidLipaphiserysimi(Kalt.)[J].Planta,2014,240:177~194.
[42]Wang G,Cai G,Kong F,etal.Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance toPseudomonassolanacearumin transgenic tobacco [J].Plant Physiology and Biochemistry,2014,82:95~104.
[43]Jelenska J,Yao N,Vinatzer B A,etal.A J domain virulence effector ofPseudomonassyringaeremodels host chloroplasts and suppresses defenses [J].Current Biology,2007,17:499~508.
[44]Rampuria S,Joshi U,Palit P,etal.Construction and analysis of an SSH cDNA library of early heat-induced genes ofVignaaconitifoliavariety RMO-40 [J].Genome,2012,55:783~796.
[45]Kong F,Deng Y,Wang G,etal.LeCDJ1,a chloroplast DnaJ protein,facilitates heat tolerance in transgenic tomatoes [J].Journal of Integrative Plant Biology,2014,56:63~74.
[46]So H A,Chung E,Lee J H.Molecular characterization of soybean GmDjp1encoding a type III J-protein induced by abiotic stress[J].Genes &Genomics,2013,35:247~256.
[47]So H.A,Chung E,Lee J H.ArabidopsisatDjC53encoding a type III J-protein plays a negative role in heat shock tolerance [J].Genes &Genomics,2014,36:1~12.
[48]Schafleitner R,Gutierrez Rosales R O,Gaudin A,etal.Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress [J].Plant Physiology and Biochemistry,2007,45:673~690.
[49]Rodrigues F A,Laia M L,Zingaretti S M.Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants[J].Plant Science,2009,176:286~302.
[50]Thumma B R,Sharma N,Southerton S G.Transcriptome sequencing ofEucalyptuscamaldulensisseedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection [J].BMC Genomics,2012,13:364.
[51]Wang X,Jia N,Zhao C,etal.Knockout of AtDjB1,a J-domain protein fromArabidopsisthaliana,alters plant responses to osmotic stress and abscisic acid [J].Physiologia Plantarum,2014:152:286~300.
[52]Zhao Z C,Zhang W R,Yan J P,etal.Over-expression ofArabidopsisDnaJ(Hsp40)contributes to NaCl-stress tolerance [J].African Journal of Biotechnology,2010,9:972~978.
[53]Sharma S K,Goloubinoff P,Christen P.Heavy metal ions are potent inhibitors of protein folding [J].Biochemical and Biophysical Research Communications,2008,372:341~345.
[54]Chai T,Zhang Y,Zhao W.Cloning of cDNA and expression analysis of a DnaJ-like gene under heavy metal stress in bean [J].Progress in Natural Science,2000,10:198~205.
[55]Venkatachalam P,Srivastava A K,Raghothama K G,etal.Genes induced in response to mercury-ion-exposure in heavy metal hyperaccumulatorSesbaniadrummondii[J].Environmental Science & Technology,2009,43:843~850.
[56]Zhen Y,Qi J,Wang S,etal.Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean[J].Physiologia Plantarum,2007,131:542~554.
[57]Cancado G M A,Nogueira F T S,Camargo S R.Gene expression profiling in maize roots under aluminum stress [J].Biologia Plantarum,2008,52:475~485.
[58]Goodwin S B,Sutter T R.Microarray analysis ofArabidopsisgenome response to aluminum stress [J].Biologia Plantarum,2009,53:85~99.
[59]Dechassa D,Soliman K M,Taylor R W,etal.Gene expression profiling in soybean under aluminum stress:genes differentially expressed between Al-tolerant and Al-sensitive genotypes [J].American Journal of Molecular Biology,2011,1:156~173.