REM-PCL对体外循环犬心肌能量代谢的影响
2015-12-02张伟晶章建平张竞超章放香
方 华 杨 淼 张伟晶 章建平张竞超 章放香
贵阳医学院附属人民医院麻醉科,贵州贵阳 550002
REM-PCL对体外循环犬心肌能量代谢的影响
方 华 杨 淼 张伟晶 章建平▲张竞超 章放香
贵阳医学院附属人民医院麻醉科,贵州贵阳 550002
目的 观察犬体外循环(CPB)中REM-PCL对心肌能量代谢的影响。 方法 采用CPB心肌缺血再灌注模型,12只犬随机分为REM-PCL组(RP组,n=6)和对照组(C组,n=6)。RP组和C组分别于转机前静脉注射0.2mg/kg REM-PCL及等量生理盐水。分别于转机前、缺血60min和再灌注60min时,测定心肌线粒体肿胀度(MSD)、丙二醛(MDA)含量、腺苷酸(ATP、AMP、ADP、EC、TAN)、活性氧(ROS)和总抗氧化能力(T-AOC)。分别于转机前、再灌注30min和60min时测定平均动脉压(MAP)、心输出量(CO)和心率(HR)。结果 两组与转机前比较,缺血后MDA、MSD和ROS均增加,TAN、EC、T-AOC及ATP含量均下降(P<0.01);C组再灌注后MDA、MSD和ROS均增加(P<0.01),TAN、EC、T-AOC及ATP含量均下降(P<0.01);缺血60min和再灌注60min时RP组MDA、MSD和ROS均明显低于C组(P<0.01),TAN、EC、T-AOC及ATP含量均明显高于C组(P<0.01)。再灌注30min和60min时RP组MAP、CO和HR较C组恢复迅速(P<0.01)。 结论 REM-PCL通过保护心肌线粒体结构及改善缺血心肌能量代谢,减轻缺血心肌再灌注损伤。
瑞芬太尼聚己内酯;线粒体;体外循环
体外循环(cardiopulmonary bypass,CPB)中心肌细胞线粒体膜结构改变及抗氧化能力下降与心肌能量代谢障碍的发生密切相关[1-4]。瑞芬太尼聚己内酯(remifentanil-poly-caprolactone,REM-PCL)是一种自行研制开发并已获得国家正式授权的新型高分子Mu阿片受体(Mu-opioid receptor,MOR)激动剂,我们的前期研究已证实REM-PCL预处理能够模拟缺血预处理对缺血再灌注心肌产生保护作用。本研究拟观察REM-PCL对CPB中犬心肌细胞抗氧化能力、线粒体膜结构变化及能量代谢状况的影响,为REM-PCL在CPB中心肌缺血再灌注损伤的防治研究提供依据。
1 材料与方法
1.1 主要试剂
REM-PCL(中国发明专利号:200810045272.8)为自行研制开发的新型高分子MOR激动剂,已证实能有效激活MOR;单磷酸腺苷(adenosine monophosphate,AMP)、二磷酸腺苷(adenosine diphosphate,ADP)和三磷酸腺苷(adenosine triphosphate,ATP)标准品(美国Sigma公司);活性氧(reactive oxygen species,ROS)、总抗氧化能力(total anti-oxidation capacity,T-AOC)和丙二醛(malondialdehyde,MDA)检测试剂盒(均为中国上海研吉生物科技有限公司)。
1.2 动物分组及模型的建立
健康成年杂种犬12只[贵阳医学院动物实验中心提供,动物合格证号为:SCXK(黔)2002-0001],体质量12~18kg,雌雄不拘,随机分为REM-PCL组(RP组)和对照组(C组),每组6只。动物腹腔内注射2.5%戊巴比妥钠25mg/kg麻醉后行气管内插管,连接Puritan-Bennett呼吸机行机械通气。股动、静脉置管监测中心静脉压(CVP)和平均动脉压(MAP)。采用胸骨正中切口,全身肝素化后右心房和左锁骨下动脉分别插管,连接Sarns5000型人工心肺机(美国3M公司)、科威97型鼓泡式氧合器(广东科威医疗用品有限公司)建立CPB。CPB前5min,调节循环温度至28~30℃,RP组与C组分别经股静脉注射REM-PCL 0.2mg/kg及等量生理盐水。稳定并行循环5min后阻断升主动脉,主动脉根部灌入4℃St.Thomas停搏液(10mL/kg),转机流量为60~80mL/(min·kg),阻断升主动脉60min。开放升主动脉后观察循环情况60min。
1.3 观察指标
分别于转机前、缺血60min、再灌注60min时分别取心肌组织,采用Alliance 2695型高效液相色谱仪(美国Waters公司)测定ADP、AMP和ATP含量,并计算其细胞能荷(Energy charge,EC) 和总核苷酸(total adenine nucleotides,TAN)含量 [EC=(ATP+1/2ADP)/ TAN ,TAN= ATP+ADP+AMP][5];参照文献[6-7],0~4℃冰浴中的烧杯中按照1∶9(w/v) 心肌组织比例分别加入10mol/L Tris-HCI,0.075mol/L sucrose,0.05mol/L EDTA,0.225mol/L D-mannitol pH 7.4分离液超声匀浆及4℃中600×g离心5min后,分离液悬浮沉淀并再次超声匀浆,4℃中600×g离心5min所得到的上清液再以4℃中10000×g离心10min,所得沉淀即为心肌细胞线粒体。线粒体悬液蛋白浓度采用考马斯亮蓝法测定并检测线粒体悬液520nm处吸光度值作为线粒体肿胀度(mitochondrial swelling degree,MSD)指标。分别于转机前、再灌注30min及60min时测定采用MP5型多功能监护仪(PHILIPS公司,美国)测定心输出量(cardiac output,CO)、平均动脉压(mean arterial pressure,MAP)和心率(heart rate,HR)血液动力学指标。
1.4 统计学方法
2 结果
2.1 心肌组织T-AOC、腺苷酸(ATP、ADP、AMP及TAN)含量和EC的比较
缺血60min和再灌注60min时两组与转机前比较,T-AOC、腺苷酸和EC均下降(P<0.01)。缺血60min和再灌注60min时组间比较,RP组T-AOC、腺苷酸和EC均明显高于C组(P<0.01)。见表1。
2.2 心肌ROS、MSD和MDA的比较
线粒体肿胀表现为520nm处吸光值的下降。缺血60min和再灌注60min时两组ROS、MSD和MDA均较转机前升高(P<0.01);缺血60min和再灌注60min时组间比较,RP组ROS、MSD和MDA均低于C组(P<0.01)。见表1。
2.3 血液动力学的比较
再灌注后C组与转机前比较CO和MAP均下降(P<0.01),HR增快(P<0.01)。再灌注60min时RP组MAP、CO和HR恢复至转机前水平。再灌注期间组间比较,RP组CO和MAP均高于C组(P<0.01),RP组HR均低于C组(P<0.01)。见表2。
3 讨论
CPB中心肌能量代谢障碍是术后心功能不全及低心输出量综合征(低心排) 等并发症发生的主要原因之一[8-9]。线粒体是产生腺苷酸的主要场所,心肌舒缩功能的顺利完成有赖于充足的腺苷酸供给,心肌能量代谢的维持依赖于线粒体结构与功能的完整性[10-11]。CPB期间ROS和MDA等炎性介质产生增加,可直接或间接造成心肌线粒体损伤,引起心肌能量代谢障碍。
表1 两组心肌腺苷酸含量、ROS、T-AOC、MSD和MDA的变化
表1 两组心肌腺苷酸含量、ROS、T-AOC、MSD和MDA的变化
注:与同组转机前比较,*P<0.01;与同期C组比较,#P<0.01
?
表2 两组血液动力学的变化
表2 两组血液动力学的变化
注:与同组转机前比较,△P<0.05 ,*P<0.01,与同期C组比较,#P<0.01
?
MSD不仅能够评价线粒体损伤的程度还是反映线粒体功能与结构的敏感指标[12-13]。本研究观察到,转机后缺血心肌组织腺苷酸水平降低,与此同时,心肌ROS、MSD和MDA均明显升高,再灌注后ROS、MSD和MDA升高更为显著;提示转机后腺苷酸合成减少,而再灌注期间虽然恢复心脏的供血供氧,但CPB中释放的ROS和MDA等炎性介质引起缺血心肌线粒体损伤,造成心肌能量代谢障碍,而发生能量代谢障碍的心肌心功能恢复缓慢,心率增快,心肌收缩力下降,说明低温缺血能够引起心肌线粒体合成ATP能力受限[10],而缺血心肌恢复血供时ROS和MDA等炎性介质破坏心肌细胞线粒体膜的完整性并引起心肌能量代谢异常[14-15],造成左心功能障碍。
本实验中,REM-PCL对线粒体膜结构有显著的保护作用,这种作用主要表现在开放主动脉后的过程中,RP组线粒体肿胀度显著低于相应时点C组,并逐渐恢复至CPB前水平,说明CPB中REMPCL能够维护线粒体膜结构的完整性。REM-PCL预处理减轻心肌缺血再灌注损伤的机制可能与激活MOR有关。研究发现,REM-PCL可能通过活化MOR激活线粒体KATP通道进而抑制ROS和MDA等炎性介质的产生[16-18]。本研究从氧化应激和脂质过氧化反应研究入手,CPB前应用REMPCL预处理可增加心肌线粒体T-AOC,降低线粒体ROS活力和MDA含量,在一定程度抑制了炎性介质介导的放大效应,使过度的脂质过氧化反应得到控制;与此同时,CPB使用REM-PCL预处理后缺血心肌腺苷酸含量明显升高, 且血液动力学指标恢复迅速。提示REM-PCL预处理在减轻心肌能量代谢障碍中起到重要作用,说明CPB前使用REMPCL预处理可有效抑制ROS和MDA等炎性介质对线粒体膜的氧化损伤及减轻线粒体氧化应激程度,并明显改善心肌能量代谢,阻止缺血再灌注损伤所致的心肌腺苷酸丢失,从而有利于转流后左心功能的改善。
[1] Athanasiou A,Smith PA,Vakilpour S,et al.Vanilloid receptor agonists and antagonists are mitochondrial inhibitors:How vanilloids cause non-vanilloid receptor mediated cell death[J].Biochem Biophys Res Commun,2007,354(1):50-55.
[2] Kavianipour M,Ronquist G,Wikstrom G,et al.Ischaemic preconditioning alters the energy metabolism and protects the ischaemic myocardium in a stepwise fashion[J].Acta Physiol Scand,2003,178(2):129-137.
[3] Wang L,Oka N,Tropak M,et al.Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest[J].J Thorac Cardiovasc Surg,2008,136(2):335-342.
[4] Hsieh YJ,Wakiyama H,Levitsky S,et al.Cardioplegia and diazoxide modulate STAT3 activation and DNA binding[J]. Ann Thorac Surg,2007,84(4):1272-1278.
[5] Atkinso DE.The energy charge of the adenylate pool as a regulation parameter,interaction with feedback modifiers[J].Biochemistry,1986,7:4030.
[6] Shlafer M,Gallagher KP,Adkins S.Hydrogen peroxide generation by mitochondria isolated from regionally ischemic and nonischemic dog myocardium[J].Basic Res Cardiol,1990,85(4):318-29.
[7] Milei J,Forcada P,Fraga CG,et al.Relationship between oxidative stress, lipid peroxidation, and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion[J].Cardiovasc Res,2007,73(4):710-719.
[8] Chen YF,Tsai WC,Lin CC,et al.Effect of leukocyte depletion on endothelial cell activation and transendothelial migration of leukocytes during cardiopulmonary bypass[J]. Ann Thorac Surg,2004,78(2):634-642.
[9] Haugen O,Farstad M,Myklebust R,et al.Low perfusion pressure during CPB may induce cerebral metabolic and ultrastructural changes[J].Scand Cardiovasc J,2007,41(5):331-338.
[10] Cancherini DV,Queliconi BB,Kowaltowski AJ. Pharmacological and physiological stimuli do not promote Ca2+-sensitive K+channel activity in isolated heart mitochondria[J].Cardiovasc Res,2006,30(6):54-58.
[11] Wang L,Kinnear C,Hammel JM,et al.Preservation of mitochondrial structure and function after cardioplegic arrest in the neonate using a selective mitochondrial KATP channel opener[J].Ann Thorac Surg,2006,81(5):1817-1823.
[12] Palmeira CM,Rana MI,Frederick CB,et al.Induction of the mitochondrial permeability transition in vitro by shortchain carboxylic acids[J].Biochem Biophys Res Commun,2000,272(2):431-435.
[13] Jahania SM,Sengstock D,Vaitkevicius P,et al.Activation of the homeostatic intracellular repair response during cardiac surgery[J].J Am Coll Surg,2013,216(4):719-726.
[14] Zago EB,Castilho RF,Vercesi AE.The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore[J].FEBS Lett,2000,478(2):29-33.
[15] Zhang H,Gong DX,Zhang YJ,et al.Effect of mitochondrial aldehyde dehydrogenase-2 genotype on cardioprotection in patients with congenital heart disease[J].Eur Heart J,2012,33(13):1606-1614.
[16] Contreras L,Gomez-Puertas P,Iijima M,et al.Ca2+activation kinetics of the two aspartate-glutamate mitochondrial carriers aralar and citrin: Role in heart malate-aspartate NADH shuttle[J].J Biol Chem,2007,8(7):17-19.
[17] Mallet RT,Sun J.Antioxidant properties of myocardial fuels[J].Mol Cell Biochem,2003,253(1-2):103-111.
[18] Slagsvold KH,Moreira JB,Rognmo O,et al.Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial[J].Int J Cardiol,2014(2):409-417.
Effect of REM-PCL on myocardial energy metabolism in dogs during cardiopulmonary bypass
FANG Hua YANG Miao ZHANG Weijing ZHANG J ianping ZHANG J ingchao ZHANG Fangxiang
Department of Anesthesiology, Guizhou Provincial People's Hospital Affiliated to Guiyang Medical College, Guiyang 550002, China
Objective To observe the effect of REM-PCL on myocardial energy metabolism in dogs during cardiopulmonary bypass. Methods Used CPB myocardial ischemia reperfusion model, 12 dogs were randomly divided into REM-PCL group (group RP, n=6) and control group (group C, n=6). RP group and C group respectively were given intravenous injection of 0.2mg/kg REM-PCL and normal saline before the driving of the rotary machine. Before the driving of the rotary machine, at 60 minutes of ischemia,and after 60 minutes reperfusion, myocardial mitochondrial swelling degree (MSD), malondialdehyde (MDA) content, adenylate (ATP, AMP, ADP, EC, TAN), reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were respectively determined. Before the driving of the rotary machine, at 60 minutes of ischemia,and after 60 minutes reperfusion, Mean arterial pressure (MAP), cardiac output (CO) and heart rate (HR) were measured. Results After ischemia, MDA, MSD and ROS of two groups were increased, and TAN, EC, T-AOC and ATP content were decreased(P<0.01). At 60 minutes of ischemia and reperfusion for 60 minutes, MDA, MSD and ROS of the RP group were significantly lower than those of C group (P<0.01), TAN, EC, T-AOC and ATP contents of the RP group were significantly higher than those of C group(P<0.01).At reperfusion for 30 minutes and 60 minutes, MAP, CO and HR of the RP group recovered more rapidly than those of group C (P<0.01). Conclusion Through the protection of myocardial mitochondrial structure and improve myocardial energy metabolism, REM-PCL can reduce myocardial ischemia reperfusion injury.
Remifentanil polycaprolactone; Mitochondrion; Cardiopulmonary bypass
R615
A
2095-0616(2015)07-19-04
2015-01-23)
贵州省科学技术厅基金资助项目(黔科合LH字[2014]7021号;贵州省科学技术厅基金资助项目(黔科合LH字[2014]7027号)。
▲通讯作者