APP下载

待定系数法求数列通项

2015-10-26王庶

高中生学习·高三版 2015年10期
关键词:求通法求公比

王庶

数列是高中数学的重难点问题,也是高考考查的重点内容. 由于它是一个特殊的函数,因此在解题的过程中经常会用到一些函数的思想方法,其中待定系数法求数列通项就是一种非常不错的思想方法. 尤其是在已知数列递推关系式求数列通项问题上的应用,一般是先运用待定系数法构造一个新的递推关系式,然后与原递推关系式对应系数相等从而解决问题. 本文就这类问题做一个归类分析,以供大家参考.

[an+1=pan+q(p,q均为常数)]型

此类型属于数列线性递推关系式求通项问题,用待定系数法求这类通项问题是一种比较常规的方法. 一般将[an+1=pan+q(p,q均为常数)]构造成[an+1+r=p(an+r)]([p]为常数)形式,注意参数[r]的引入.

例1  若[a1=1],[an+1=2an+3,]求数列[an]的通项.

解析  令[an+1+r=2(an+r)],则[an+1=2an+r].

[∵][an+1=2an+3,]

[∴]由待定系数法可得,[r=3,]即[an+1+3=2(an+3)].

[∴][an+1+3an+3=2].

[∴]数列[{an+3}]是一个公比为[2]的等比数列,其通项为[an+3=a1?2n+1].

又[∵a1=1],

[∴数列{an}的通项为an=2n+1-3].

[an+1=pan+qn]([p,q]为常数)型

此类型属于数列非线性递推关系式求通项问题,一般将原式[an+1=pan+qn]([p,q]为常数)构造成[an+1+λqn+1][=p(an+λqn)]([p,q]为常数),注意参数[λ]的引入和[an]的系数[p]的提取.

例2  若[a1=1,][an+1+an=3?2n,]求数列[an]的通项.

解析  令[an+1+λ?2n+1=-(an+λ?2n)],

则[an+1+an=-λ?2n+1-λ?2n=-3λ?2n].

由待定系数法可知,[λ=-1].

即[an+1-2n+1=-(an-2n)],

[∴an+1-2n+1an-2n=-1].

[∴]数列[{an-2n}]是公比为[-1]的等比数列.

又因为[a1=1],

所以其通项为[an-2n=(a1-2)?(-1)n-1=(-1)?(-1)n-1.]

[∴an=2n+(-1)n].

例3  若[a1=1,an+1+2an=3?2n,]求数列[an]的通项.

解析  例3是例2的一种变式,方法同例2.

令[an+1+λ?2n+1=-2(an+λ?2n),]

则[an+1+2an=-λ?2n+1-2λ?2n=-4λ?2n]

由待定系数法可得,[λ=-34],

即[an+1-34?2n+1=-2(an-34?2n).]

[∴an+1-34·2n+1an-34·2n=-2].

[∴]数列[{an-34·2n}]是公比为[-2]的等比数列.

又[a1=1],

所以其通项为[an-34·2n=(1-34·2)?(-2)n-1][=(-2)n-2].

[∴an=34·2n+(-2)n-2].

[an+1=pan+nq+r(p,q,r均为常数)]型

此类型属于数列线性递推关系式求通项的另一类问题,它是在第一种类型的基础上多了一个非常数项[nq]. 对于这类递推关系,一般将其构造为[an+1+x(n+1)+y][=p(an+xn+y)]([p]为常数)的形式,注意引入了两个参数[x,y.]

例4  已知[a1=2,][an+1=2an+3n+1,]求数列[an]的通项.

解析  令[an+1+x(n+1)+y=2(an+xn+y)],

则[an+1=2an+xn-x+y].

由待定系数法对应系数相等可得,

[x=3,-x+y=1,?x=3,y=4.]

[∴an+1+3(n+1)+4=2(an+3n+4).]

所以数列[{an+3n+4}]是公比为[2]的等比数列,其通项为[an+3n+4=(a1+7)·2n-1=9·2n-1].

[∴an=9·2n-1-3n-4].

[an+1=pan+qn+r(p,q,r均为常数)]型

此类型属于数列非线性递推关系式求通项问题,它是在第二类型问题基础上多了一个常数[r]. 对于这类递推关系,一般将其构造成[an+1+xqn+1+y][=p(an+xqn+y)]([p,q]为常数)的形式,然后根据题目条件,运用对应系数相等的方法求出相关系数,其中要注意参数[x,y]的引入.

例5  已知[a1=1],[an+1=2an+3n+1,]求数列[an]的通项.

解析  令[an+1+x3n+1+y=2(an+x3n+y)],

则[an+1=2an-x3n+y].

由待定系数法对应系数相等可得,[x=-1,y=1.]

[∴an+1-3n+1+1=2(an-3n+1)].

即数列[{an-3n+1}]是公比为[2]的等比数列,其通项为[an-3n+1=(a1-2)·2n-1].

又[a1=1,]

[∴]通项公式为[an=3n-2n-1-1].

数列求通项问题在每年的高考中都有考查,其方法多种多样,灵活多变. 待定系数法作为数学的基本思想方法,应用非常广泛,它在已知数列递推关系式求通项问题中的应用,只不过是它的冰山一角. 如果我们在平时的学习中注意积累,做个有心人,你将会有意想不到的收获.

猜你喜欢

求通法求公比
巧用代数法求圆锥曲线中最值问题
求通项,远亲不如近邻——由an与an+1的关系而来
转化法求a+mb型最小值
数列核心考点测试卷B 参考答案
全国名校数列测试题(B卷)答案与提示
数列基础训练A 卷参考答案
全国名校等比数列测试题(A卷)答案与提示
递推数列类型分析