RTK技术与全站仪在矿山测量中的联合作业
2015-10-21陈世伟
陈世伟
摘要:本文主要就RTK技术与全站仪在矿山测量中的联合作业进行了分析研究。
关键词:RTK技术;全站仪;矿山测量;联合作业
一、RTK技术与全站仪的概述
1、RTK技术
RTK(Real Time Kinematic)是实时动态定位的简称,这种技术的基本原理是以载波相位观测值为基础的实时差分方法,从而得到厘米级精度的测点三维坐标,是GPS单点测量技术与短距离数据传输技术的有机结合,具有测量时间短、精度高的优点。现如今GPSRTK技术已经成功的在大地控制测量、工程测量、數字地形测量中得到了广泛应用。同时,在GPSRTK测量模式中,用户接收机可以根据观测基站发出的改正信息以及观测成果的质量和待定坐标的求解情况实时的进行动态坐标计算,减少冗余的观测数据,实现准实时定位,提高工作效率和准确程度,因而得到了广泛的应用。GPSRTK技术的基本实现过程是在观测的基准站安装一台GPS接收机,在一个观测时段内对可以接收到的所有卫星进行连续的观测,同时将所观测到的数据通过无线电数据传输设备发送给不断移动的流动站,对于初始过程,流动站的坐标是准确的知道的,这样用户接收机可以根据基准站和已知坐标的流动站计算出差分信息,也就是相对定位中的三维坐标差,然后在后续的测量中,流动站根据初始过程得到的差分信息和接收的GPS信号计算流动站的准确坐标,这个坐标是WGS-84坐标系下的,进过坐标转换即可得到制定坐标系下的待定点三维坐标。
2、全站仪
以现使用的宾得某系列全站仪为例,测量原理具体如下:将全站仪架设在控制点上对中整平,选定测量B模式后,输入控制点的三维坐标、仪器高、目标高,设置好工作模式后照准另一控制点定向,完成设站后照准目标点上的反射棱镜,按ENTER进行测量,仪器就会自动计算并显示出目标点的三维坐标值。
二、GPS_RTK和全站仪联合的优越性
为了满足在山区地形测量的需求,以及在短时间内完成作业任务,将全站仪与RTK结合使用。如果用全站仪进行测图,就必须建立控制网,主要采用解析法和极坐标法测图,但由于其具有成图周期长、精度低、劳动强度大等特点,必须投入大量的时间、人力、财力。如果用RTK单独测图,不要求两点间满足光学通视,只要求满足“电磁波通视”和对天基本通视,可以省去大量时间、人力、财力,但是在地形条件复杂的情况下,RTK会受信号限制。若遇到信号差的地形环境就很难接受到卫星信号,有时甚至会因为干扰信号过强而导致无RTK解算,从而无法进行测量。如果将RTK和全站仪配合使用,上述的弊端就可以克服。在测区范围内利用RTK布设控制点,在RTK不容易到达或者局限性较大的地方可在附近布设控制点,再利用全站仪进行测量,这样可以快速完成各种测量任务,且精度也可以保证。利用GPSRTK技术进行矿上测量的工作流程如下:(1)首先要收集测区的已有的控制点的资料。这些资料主要有:测区已知的控制点坐标、高程数据、相应的等级的测量规范、测区的坐标系信息、测区的地形图和控制点的位置参考图、中央子午线、已有的坐标系使用情况等。另外,如果没有已知的控制点数据,必须建立GPS控制网。同时控制点的空间分布应该比较均匀,数量不低于4-5个。(2)测区的坐标转换参数的求解过程。由于利用GPS所获得的坐标是WGS-84坐标系下的三维坐标,而一般矿上测量所需的坐标是地方坐标下的坐标,所以要进行坐标的相互转换。可利用已知控制点的地方坐标和测得的WGS-84坐标在后处理软件中进行坐标参数的计算,直接得到指定坐标系下的三维坐标。(3)基准站和流动站的参数设置。在GPSRTK测量模式下,其坐标精度与流动站和基准站的距离有关,也与流动站接收信号的强度有关。所以对于基准站的位置选择最好在位置相对比较高的地方,并且尽量在测区的中心位置,同时,比较开阔,不影响卫星信号的接收,如果测区比较大,可利用外置电台增加基准站信号的发射频率。
三、RTK技术与全站仪在矿山测量中的联合作业
1、露天矿采剥量验收测量
露天矿月采剥总量200多万吨,每月要对两采场进行四次验收测量,露天矿属于台阶式剥离,由于工作时间紧、作业平台多、电铲作业点多,单纯使用全站仪来测量验收,工作效率低,如果单独用RTK作业,虽然碎部点数据采集效率高,但是矿坑边帮落差最大超过350m,受仪器设备条件的限制,一些地方存在信号弱或者无信号现象,数据出现差分解与浮点解甚至无效解,无法满足数据精度要求,因此,在验收时采用RTK与全站仪联合测量作业,发挥两者设备的优点,做到设备的优缺互补,保证数据精度的同时,提高了工作效率,节省了大量的人力、物力。应用实例证明采用RTK与全站仪联合作业以前,南北采场月剥离量2×106t左右需要验收测量时间3~4d,而现在月剥离量3×109t只需要1~2d。
2、矿区地形图测绘
矿山建设与生产中随时都要对矿山所涉及的道路、山头等进行改造,就需要对矿区这些部位进行详细地形图测绘。RTK与全站仪联合作业应用实例为2010年公司所属任家滩水库灾情地形图测绘,工作组测量人员为11人,其中,1人指挥,4人操作两台RTK流动站,2人观测全站仪,4人立目标棱镜。通过实际踏勘选点,首先使用GPS-RTK静态模式,在4km长的受灾外山头选取四个控制点,与起算点采取网连接方式进行联测,完成受灾测区控制网,在测区内根据地形环境进行作业范围划分,对于通视条件差,卫星信号好的范围内RTK进行碎部点采集,对于卫星信号差或者无信号测区范围,在测区范围选取临时控制点,由RTK采集坐标作为全站仪工作起算数据,再由全站仪进行卫星信号盲区区域进行碎部点采集测绘。通过两种仪器的联合应用,仅用两天多就完成了长4km,6×105m2的灾区控制网与地形测绘工作。
四、GPS_RTK和全站仪配合使用的注意事项
基准站尽可能架高,以提高数据链的传输速度和距离,应避开强磁场;测量山区地形时,若遇到坎,难以行走不好测,可以把RTK举高到坎边,将天线高改为零,再次测量时一定要改回天线高;在树下用RTK时,通常会遇到非固定解,可以采取等待,或者对应数据链小于要求时采取浮点解,但是要记下点号作内业时记得处理;全站仪整平对中,对中偏差不得超过1mm;全站仪采用RTK采集的坐标点作为测站点时一定要对检核点进行检核,符合限差要求方可采用;全站仪如有碰动需要重新对中整平。
结束语
总而言之,RTK技术和全站仪测量技术在矿山测量中的配合应用,两种技术可以相互补充,能够有效促进矿山测量质量,因此,在具体的矿山测量过程中,应该加强RTK技术和全站仪测量技术的联合使用,促进矿山工程的发展和进步。
参考文献:
[1]张彦春. 全站仪测量技术在矿山测量中的应用技术研究[J]. 甘肃科技,2012,13:27-28.
[2]李鹏,李燕. GPS-RTK技术在矿山测量中的应用分析[J]. 内蒙古煤炭经济,2012,09:81+83.
[3]王永乐. RTK和全站仪技术在管线工程测量中的联合应用——以西气东输二线温米段为例[J]. 测绘科学,2008,S1:273-274+126.