APP下载

工科非物理专业“量子力学”教学初探

2015-08-16王振王巍王冠宇

读写算·素质教育论坛 2015年7期
关键词:量子力学教学探讨

王振 王巍 王冠宇

摘 要 本文主要针对微电子科学与工程专业学生的数学和普通物理基础通常比较薄弱情况,对“量子力学”课程教学进行初步探讨,以求激发学生学习的积极性,提高教学质量。

关键词 微电子科学与工程 量子力学 教学探讨

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2015) 07-0004-02

量子力学作为当代科学发展最成功的理论之一,它主要研究微观粒子的运动规律,与相对论一起构成了现代物理学的理论基础。量子力学是学习固体物理、半导体物理和微电子技术等专业课程的重要基础,已经成为很多理工科专业最重要的必修基础课程之一。其体现出的研究和对待新事物的思想和方法,对学生学习其他学科和毕业后从事其工作均有很好的指导和启迪作用,对培养学生的探索精神和创新意识及科学素养亦具有十分重要的意义。

量子力学理论与学生长期以来接触到的经典物理体系和日常生活常识相距甚远,尤其是处理问题的思路和手段与经典物理更是截然不同,但二者又是科学上的继承和创新的关系,许多量子力学中的基本概念和基本理论是从经典物理中的相关内容类比而来的。因此,在教学中一方面需要彻底打破学生在经典物理学习中已经形成的固有观念和认识,另一方面在学习量子力学某些基本概念和基本理论时又要求学生建立起与经典物理之间的联系,以形成较为直观的物理图像,这种思维上的冲突导致学生在学习这门课程时困惑不堪。同时,微电子科学与工程专业学生由于数学和普通物理基础比较薄弱,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。那么,在教学量子力学时,应如何激发兴趣,提高教学质量呢?

一、学习量子力学发展史,激发学生的求知欲

兴趣是最好的老师,量子力学课程的第一节课讲授效果对学生学习量子力学的兴趣影响很大,所以量子力学绪论课的讲解直接影响到学生对学习量子力学这门课程的态度。作者主要通过列举早期与量子力学相关的诺贝尔物理学奖,以及量子力学中奇特的现象来抓住学生的兴趣。诺贝尔奖得主历来都是世人瞩目的人物,处于网络时代的学生当然也会有所关心和理解,而且他们的主要工作在量子力学这门课程中都将会一一介绍,这样通过举例子的方法强调了量子力学在自然科学中的重要地位。同时也为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念,逐渐消除学生对量子力学的恐惧感。通过介绍四大经典力学,引导出量子力学和大家熟悉的经典物理学的关系,并结合经典物理学史上出现的困难和解决过程,让学生深入了解量子力学发展史。这样一方面可使学生对量子力学的形成和建立的科学历史背景有深刻了解,有助于学生厘清经典物理与量子理论之间的界限和区别,加深他们对量子力学基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。

在授课过程中,在介绍量子力学发展史上一些著名科学家的简历,如爱因斯坦,海森伯,薛定谔等的同时,适当地量子力学发展史上的大事记,比如第一颗原子弹爆炸,第一个晶体管的发明等。通过介绍这些学生熟悉的人物及相关事件,有助于促进学生对量子力学课程的兴趣,在听故事的过程中了解量子力学的诞生,通过讲述量子力学与经典物理学的关系,让学生明白量子力学是现代物理学基础之一,在微电子科学与工程后续课程固体物理、半导体物理等学科的发展中它都有重要的意义和应用。

二、加深对物理概念的把握,帮助学生找寻学习方法

量子力学课程的教学和学习需要线性代数、概率论、高等数学、数理方法等数学课程作为的数学基础,而在微电子科学与工程专业学生的数学基础比较薄弱,从而对量子力学产生畏惧心理,影响对后续课程的学习。在物理学中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维势垒问题的教学中,对于数学方面的问题,只要求学生能正确写出入射粒子能量和势垒高度不同关系情形下三个区域薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。

三、改革教学方法和手段,加深学生的理解

“量子力学”课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取灌输式教学方法和长时间的板书推导,学生势必感到枯燥,甚至厌烦。长期以往,必然挫败学生的学习积极性,使得学习效果大打折扣。作者在教学过程中通过采用类比的方法构建物理图像使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。取得了不错的教学效果。结合图形、影像等多媒体手段,模拟实验全过程。借助有关的教学软件,通过对真实情景的再现和模拟,可以让学生重复观察模拟实验过程,增加师生之间的互动,调动学生的积极性,加深学生对所学知识的理解。例如:在讲述微光粒子的波动性,借助电子衍射实验图像类比讲解波函数的统计解释和态叠加原理时,使用多媒体动画,我们可形象地展现电子一个一个打到屏幕上最后得到衍射图样的过程。通过减弱电子流强度使粒子一个一个地被衍射,粒子一个个随机的被打到屏幕各处,显示电子的粒子性;但经过足够长的时间,所得衍射图样和大量电子同时衍射所得图样一样,显示电子的波动性以及波函数的统计解释,可以加深学生的印象,理解其物理意义,同时也容易激发学生的学习热情。通过比较电子和经典粒子的波长,说明为什么在日常生活中难以观测到粒子的波动性,加深学生对微观粒子波粒二象性的理解和掌握。若使用传统板书手工绘制,不仅速度慢而且不准确,直接影响教学效果。

四、结束语

微电子科学与工程作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,以实现微米和纳米尺寸下电路和系统的集成为目的。针对这种情况,在授课时应注意介绍量子力学和微电子科学与工程的联系,尽可能进行知识的渗透和迁移。课堂教学过程是一个不断探索、总结和创新的过程。要实现量子力学这门课程的全面深入的改革,还有待与同仁一道共同努力。

参考文献:

[1]周世勋,量子力学教程【M】.2版.北京:高等教育出版社,2009.

[2]曾谨言.量子力学【M].3版.北京:科学出版社,2000.

[3]曹天元.上帝掷骰子吗:量子物理史话【M】,辽宁:辽宁教育出版社,2006.

基金项目:中地共建项目一重庆国际半导体学院教学团队建设(2013.10-2015.12);重庆国际半导体学院产学研用结合培养模式研究与实践(111023)

(责任编辑 楚云鹏)

猜你喜欢

量子力学教学探讨
原子物理教学中的实验观
基于语言学理论指导下的高校英语教学探讨
矩阵的等价标准型在量子力学中的应用