APP下载

平面直角坐标题 分类讨论要注意

2015-05-30朱亚邦

关键词:坐标轴直角坐标顶点

朱亚邦

我们在解与平面直角坐标系有关的问题时,经常会遇到包含多种情况的问题,稍不理解,就会漏解,这就需要我们谨慎对待,仔细分析.

一、两种情况的讨论

1.与面积有关的分类.

例1 已知点A(l,0),B(5,0),点P在y轴上,且 S△ABP=8,求点P的坐标.

解析:点A、B在x轴上,且AB=5-1=4.

点P在y轴上,可设点P的坐标为(O,h).

由S△ABP=8可得1/2AB.|h|=8,即1/24|h|=8.

故=±4.

所以点P的坐标为(0,4)或(0,-4).

2.与坐标轴有关的分类.

例2 已知点A(n+1,3),B(2,n),当AB平行于坐标轴时,求点A、B的坐标,

解析:应分如下两种情况讨论,

当AB平行于x轴时,点A、B的纵坐标相等,即n=3.所以n+1=4.

此时点A、B的坐标分别为(4,3),(2,3).

当AB平行于y轴时,点A、B的横坐标相等,即n+l=2.解得n=1.

此时点A、B的坐标分别为(2,3),(2,1).

二、三种情况的讨论

1.与正方形的顶点有关的分类.

例3在平面直角坐标系中,一个正方形的两个顶点的坐标分别为(0,0),(-2,0),求另外两个顶点的坐标.

解析:由已知的两个顶点的坐标(0,0),(-2,0),可知这两个顶点都在x轴上,而另外两个顶点则有三种情况(如图1).故另外两个顶点的坐标可能分别为(0,2),(-2,2),也可能分别为(0,-2),(-2,-2),还可能分别为(-1,1),(-1,-1).

2.与平行四边形的顶点有关的分类.

例4 已知一个平行四边形的三个顶点分别为0(0,0),A(2,0),B(l,2),求第四个顶点C的坐标,

解析:共有三种情况(如图2).

顶点C的坐标为(1,-2)或(-1,2)或(3,2).

三、四种情况的讨论

1.与距离有关的分类.

例5 已知点P(m,n)到x轴的距离为3,到y轴的距离为5,求点P的坐标.

解析:点P(m,n)到x轴的距离为3,故|n|=3,所以n=±3;点P(m,n)到y轴的距离为5,故|m|=5,所以m=±5.

故点P的坐标为(5,3)或(-5,3)或(5,-3)或(-5,-3).

2.与坐标轴、距离有关的综合分类.

例6 已知点A(0,0),点B和点A在同一条坐标轴上,且点B到点A的距离为5,求点B的坐标.

解析:点B和点A可能同在x轴上(此时点B可能在点A右侧,也可能在点A左侧),也可能同在y轴上(此时点B可能在点A上方,也可能在点A下方),故点B的坐标为(5,0)或(-5,0)或(0,5)或(0,-5).

猜你喜欢

坐标轴直角坐标顶点
从平面直角坐标系到解析几何
深入学习“平面直角坐标系”
用坐标轴平移妙解斜率和(或积)为定值问题
过非等腰锐角三角形顶点和垂心的圆的性质及应用(下)
深刻理解平面直角坐标系
关于顶点染色的一个猜想
认识“平面直角坐标系”
巧用仿射变换妙解高考解析几何题
数学问答
一个人在顶点