REM-PCL对犬缺血再灌注心肌线粒体抗氧化能力的影响*
2015-04-19方华杨淼张伟晶章建平张竞超章放香
方华 杨淼 张伟晶 章建平 张竞超 章放香
缺血再灌注损伤心肌线粒体功能障碍与线粒体抗氧化能力及膜结构的变化有密切关系[1-2]。瑞芬太尼聚己内酯(remifentanil-poly-caprolactone,REM-PCL) 是 一 种 自行研制开发并已获得国家正式授权的缓释Mu阿片受体(μ-opioid receptor,MOR)激动剂,笔者的前期研究已证实REM-PCL预处理能够模拟缺血预处理对缺血再灌注心肌产生保护作用。本研究旨在探讨REM-PCL对体外循环(cardiopulmonary bypass,CPB)中犬心肌细胞线粒体膜结构和抗氧化能力的影响,为REM-PCL在CPB中心肌保护的研究提供理论依据。
1 材料与方法
1.1 主要试剂 REM-PCL(中国发明专利号:200810045272.8)为自行研制开发的新型高分子MOR激动剂,已证实能有效激活MOR。总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、丙二醛(MDA)和谷胱甘肽过氧化物酶(GSH-PX)试剂盒(均为中国上海研吉生物科技有限公司)。
1.2 动物分组及模型的建立 选择健康成年杂种犬12条(贵阳医学院动物实验中心提供),体质量12~18 kg,雌雄不拘,随机分为REM-PCL组(RP组)和对照组(C组),每组6只。动物腹腔内注射2.5%戊巴比妥钠25 mg/kg麻醉后行气管内插管,连接Puritan-Bennett呼吸机行机械通气。股动、静脉置管监测中心静脉压(CVP)和平均动脉压(MAP)。采用胸骨正中切口,全身肝素化后右心房和左锁骨下动脉分别插管,连接Sarns5000型人工心肺机(美国3M公司)、科威97型鼓泡式氧合器(广东科威医疗用品有限公司)建立CPB。CPB前5 min,调节循环温度至28~30 ℃,RP组与C组分别经股静脉注射REM-PCL 0.2 mg/kg及等量生理盐水。稳定并行循环5 min后阻断升主动脉,主动脉根部灌入4 ℃St.Thomas停搏液(10 mL/kg),转机流量为60~80 mL/(min·kg),阻断升主动脉60 min。开放升主动脉后观察循环情况60 min。
1.3 指标测定 采用差速离心法提取心肌线粒体[3-4]。分别于CPB前、缺血60 min、再灌注60 min时取左心室前壁心肌,0~4 ℃冰浴中的烧杯中按照1∶9(w/v)心肌组织比例分别加入 10 mol/L Tris-HCI, 0.075 mol/L sucrose,0.05 mol/L EDTA,0.225 mol/L D-mannitol pH 7.4分离液超声匀浆及4 ℃中600×g离心5 min后,分离液悬浮沉淀并再次超声匀浆,4 ℃中600×g离心5 min所得到的上清液再以4 ℃中10 000×g离心10 min,所得沉淀即为心肌组织线粒体。线粒体悬液蛋白浓度采用考马斯亮蓝法测定并检测线粒体悬液520 nm处吸光度值作为线粒体肿胀度(mitochondrial swelling degree,MSD)指标[3]。分别取10 g/L的线粒体50 μL测定T-AOC和SOD,100 g/L的线粒体0.2 mL测定GSH-PX和MDA。
1.4 统计学处理 采用SPSS 16.0软件对数据进行统计分析,计量资料以(x-±s)表示,组间比较采用单因素方差分析和q检验,P<0.05为差异有统计学意义。
2 结果
2.1 心肌细胞线粒体MSD和MDA的变化 线粒体肿胀表现为520 nm处吸光值的降低。C组MDA和MSD在缺血60 min、再灌注30 min和60 min时与转机前比较均明显增加(P<0.01),RP组在缺血60 min和再灌注30 min时MDA和MSD均显著增加(P<0.05或0.01),RP组在再灌注60 min时MDA和MSD与转机前比较差异均无统计学意义(P>0.05)。RP组在缺血60 min、再灌注30 min和60 min时MDA和MSD均低于C组(P<0.01),见表1。
2.2 心肌线粒体T-AOC、GSH-PX及SOD的变化 C组与转机前比较,T-AOC、GSH-PX及SOD在缺血60 min、再灌注30 min和60 min时均显著降低(P<0.01),RP组在缺血60 min和再灌注30 min时T-AOC、GSH-PX及SOD均降低(P<0.05),RP组在再灌注60 min时T-AOC、GSHPX及SOD均恢复至转机前水平(P>0.05)。RP组在缺血60 min、 再 灌 注 30 min和 60 min时 T-AOC、GSH-PX及SOD均高于C组(P<0.01),见表1。
表1 两组心肌线粒体MDA、MSD、T-AOC、GSH-PX及SOD的比较(±s)
表1 两组心肌线粒体MDA、MSD、T-AOC、GSH-PX及SOD的比较(±s)
*P<0.05,△P<0.01,与转机前比较;#与同期C组比较,P<0.01
组别 指标 MSD(A520 nm) MDA(nmol/mg prot) GSH-PX(μmol/L) SOD(NU/mg prot)T-AOC(U/mg prot)C组(n=6)转机前 9.3±0.4 1.6±0.9 57.6±10.4 34.9±7.4 38.4±6.5缺血60 min 4.3±1.3△ 6.4±1.4△ 46.3±8.8△ 21.6±4.4△ 26.3±4.9△再灌注30 min 3.3±0.9△ 8.5±1.2△ 40.7±7.5△ 16.7±6.8△ 15.5±4.2△再灌注60 min 2.5±1.2△ 9.2±1.5△ 36.5±7.2△ 15.8±4.4△ 16.6±5.7△RP组(n=6)转机前 9.2±1.1 1.8±0.7 59.8±9.4 35.3±6.9 36.1±4.9缺血 60 min 7.7±1.9△# 4.6±1.1△# 52.2±7.9*# 26.8±5.9*# 31.3±5.6*#再灌注30 min 8.2±1.8*# 4.9±0.9*# 53.1±9.8*# 27.3±5.4*# 31.4±6.3*#再灌注60 min 9.6±1.7# 1.9±0.6# 57.6±8.3# 30.6±5.2# 33.4±6.2#
3 讨论
线粒体是心肌细胞能量代谢的主要场所,心肌细胞的功能状态与线粒体膜功能和抗氧化能力的改变有着密切的关系。CPB中手术操作、温度改变、缺血以及再灌注等均可引起心肌细胞线粒体功能障碍,导致心肌收缩力下降,出现心功能衰竭及心律失常等并发症[5-7]。
本研究中,CPB期间心肌缺血后C组代表线粒体内抗氧化能力的T-AOC、抗氧化酶GSH-PX和SOD均明显降低,与此同时,MSD与反映脂质过氧化程度的终产物心肌细胞线粒体MDA含量均显著升高;再灌注后C组T-AOC、GSH-PX和SOD未见恢复,相反较缺血期间进一步下降,MSD与MDA进一步升高,说明CPB引发脂质过氧化反应通过破坏心肌细胞线粒体氧化与抗氧化平衡[8-10],使线粒体膜功能及结构的完整性遭到损害;提示心肌线粒体膜结构及功能的维持与心肌缺血再灌注过程中线粒体氧化与抗氧化的动态平衡有密切联系[8-9]。
线粒体膜及膜蛋白结构的完整性是心肌舒缩功能顺利完成的重要保障[11-13]。在对MSD的影响方面,本研究发现静脉注射REM-PCL 0.2 mg/kg对线粒体膜结构有明显的保护作用,这种作用主要表现在开放主动脉后的过程中,RP组线粒体肿胀度显著低于相应时点C组,并逐渐恢复至CPB前水平,说明CPB中REM-PCL对线粒体膜等均有很好的保护作用。REM-PCL预处理减轻心肌缺血再灌注损伤的机制与激活MOR有关。研究发现,MOR属于G蛋白藕联受体,通过G蛋白与线粒体KATP通道相链接[14-16]。REM-PCL可能通过活化MOR来激活线粒体KATP通道来清除氧自由基,降低组织细胞代谢率, 可能也是增强机体抗氧化能力的机制之一[17-18]。本研究从氧化应激和脂质过氧化反应入手,CPB中应用REM-PCL预处理可增加心肌线粒体SOD、GSH-Px活性,降低线粒体MDA含量,在一定程度上清除氧自由基以及降低氧自由基的介导放大效应,使过度的脂质过氧化反应得到控制。提示REM-PCL可有效抑制氧自由基对线粒体膜的氧化损伤,说明CPB中REM-PCL预处理可以有效减轻线粒体氧化应激程度,提升心肌线粒体抗氧化能力,对心肌细胞线粒体起到较好的保护作用。
[1] Kavianipour M,Ronquist G,Wikstrom G,et al.Ischaemic preconditioning alters the energy metabolism and protects the ischaemic myocardium in a stepwise fashion[J].Acta Physiol Scand,2003,178(2):129-137.
[2] Mallet R T,Sun J.Antioxidant properties of myocardial fuels[J].Mol Cell Biochem,2003,253(1-2):103-111.
[3] Shlafer M,Gallagher K P,Adkins S.Hydrogen peroxide generation by mitochondria isolated from regionally ischemic and nonischemic dog myocardium[J].Basic Res Cardiol,1990,85(4):318-329.
[4] Hsieh Y J,Wakiyama H,Levitsky S,et al.Cardioplegia and diazoxide modulate STAT3 activation and DNA binding[J].Ann Thorac Surg,2007,84(4):1272-1278.
[5] Athanasiou A, Smith P A, Vakilpour S,et al.Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: How vanilloids cause non-vanilloid receptor mediated cell death[J]. Biochem Biophys Res Commun,2007,354(1):50-55.
[6] Contreras L,Gomez-Puertas P,Iijima M,et al.Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers aralar and citrin: Role in heart malate-aspartate NADH shuttle[J].J Biol Chem,2007, 8(7):17-19.
[7] Wang L,Oka N,Tropak M,et al.Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest[J].J Thorac Cardiovasc Surg,2008,136(2):335-342.
[8] Palmeira C M, Rana M I, Frederick C B,et al.Induction of the mitochondrial permeability transition in vitro by short-chain carboxylic acids[J].Biochem Biophys Res Commun,2000,272(2):431-435.
[9] Oz E,Erbas D,Surucu HS,et al.Prevention of doxorubicin-induced cardiotoxicity by melatonin[J].Mol Cell Biochem,2006,282(1):31-37.
[10] Jahania S M,Sengstock D,Vaitkevicius P,et al.Activation of the homeostatic intracellular repair response during cardiac surgery[J]. J Am Coll Surg,2013,216(4):719-726.
[11] Chen Y F,Tsai W C,Lin C C,et al.Effect of leukocyte depletion on endothelial cell activation and transendothelial migration of leukocytes during cardiopulmonary bypass[J].Ann Thorac Surg,2004,78(2):634-642.
[12] Dukie S,Walker R B,Daya S,et al.A sensitive and reliable method for the detection of lipid peroxidation in biological tissues[J].J Pharm Pharmacol,2001,53(8):263-266.
[13] Cancherini D V,Queliconi B B,Kowaltowski A J.Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K(+)channel activity in isolated heart mitochondria[J]. Cardiovasc Res,2006,30(6):54-58.
[14] Zago E B, Castilho R F, Vercesi A E.The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore[J].FEBS Lett,2000,478(2):29-33.
[15] Bowie A,Neill L A.Oxidative stress and nuclear factor-kappaB activation:a reassessment of the evidence in the light of recent discoveries[J].Biochem Pharmacol,2000,59(2):13-23.
[16] Pepe S,Liaw N Y,Hepponstall M,et al.Effect of remote ischemic preconditioning on phosphorylated protein signaling in children undergoing tetralogy of Fallot repair: a randomized controlled trial[J].J Am Heart Assoc,2013,2(3):e000095.
[17] Slagsvold K H,Moreira J B,Rognmo O,et al.Remote ischemic preconditioning preserves mitochondrial function and activates prosurvival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial[J].Int J Cardiol,2014, 177(2):409-417.
[18] Wang L,Kinnear C,Hammel J M,et al.Preservation of mitochondrial structure and function after cardioplegic arrest in the neonate using a selective mitochondrial KATP channel opener[J].Ann Thorac Surg,2006,81(5):1817-1823.