运动预处理诱导脑缺血耐受机制的研究进展①
2015-01-25吴孝军朱路文李宏玉唐强
吴孝军,朱路文,李宏玉,唐强
运动预处理诱导脑缺血耐受机制的研究进展①
吴孝军1,朱路文2,李宏玉1,唐强2
运动预处理可诱导脑缺血性损伤耐受,具有显著的脑神经系统保护作用。运动预处理改善脑缺血性损伤的具体作用机制较为复杂,涉及多靶点、多途径的调控,其中抑制细胞凋亡、促进脑神经血管生成、抑制谷氨酸的过度激活以及调控炎症反应是运动预处理诱导脑缺血耐受的关键机制。然而运动预处理诱导脑缺血耐受的机制远不止于此,有待进一步研究和发现。
脑缺血;耐受;运动预处理;综述
[本文著录格式]吴孝军,朱路文,李宏玉,等.运动预处理诱导脑缺血耐受机制的研究进展[J].中国康复理论与实践,2015, 21(6):657-661.
CITED AS:Wu XJ,Zhu LW,Li HY,et al.Advance in mechanism of cerebral ischemia tolerance induced by exercise preconditioning (review)[J].Zhongguo Kangfu Lilun Yu Shijian,2015,21(6):657-661.
脑血管病(cerebrovascular disease,CVD)占我国最常见致残和致死原因的第二位[1],其中以脑血管阻塞性缺血所致的缺血性脑卒中最为常见,发病率约占脑卒中的70%[2]。寻找有效的防治手段,以减小脑缺血损伤后脑组织梗死的面积,成为预防医学和临床医学的研究热点。
运动预处理(exercise preconditioning,EP),即在脑缺血前给予多次相同的运动训练,可有效诱导脑缺血耐受,产生明显脑神经系统保护作用,并减缓因脑缺血引发的一系列脑组织损伤[3]。相比于其他预处理方式,其优势在于便于掌握,易被患者接受,临床上便于操作。目前研究普遍认为运动预处理是与多个通道、多个水平、多个靶点密切相关的综合性系统。
1 神经元凋亡
缺血损伤后脑神经细胞的损伤表现为两种方式,一种是由于严重的脑组织损伤而导致的直接性病理死亡,而另一种则是细胞程序性凋亡(programmed cell death,PCD),也就是所谓的细胞生理性死亡,是由于细胞内部自杀程序在内外界因素的刺激下被激活而导致的。细胞凋亡在脑组织缺血性损伤中,尤其是脑缺血再灌注性损伤中发挥着关键性作用[4-6]。脑缺血损伤发生后的迟发性神经元死亡以凋亡为主[7]。如果能及时有效地阻止神经元凋亡的发生发展,可以有效减轻由于脑缺血造成的脑组织损伤。
Tahamtan等发现运动预处理使缺血性损伤的脑组织海马区保留更多存活的神经元,有效减少神经元凋亡[8]。Zhang等研究指出运动训练有效缓解脑卒中后自噬现象,并降低神经细胞凋亡[9]。Chaudhry等研究表明运动训练诱发的神经保护可能是通过调节基质金属蛋白酶-9(matrix metalloprotein-9,MMP-9)和细胞外调节蛋白激酶(extracellular regulated protein kinases 1/2, ERK1/2)的表达,以减少神经细胞凋亡而实现的[10]。Liebelt等
发现运动预处理可以通过调控热休克蛋白70(heat shock protein-70,HSP-70)和磷酸化ERK1/2的表达,减轻脑缺血/再灌注损伤[11],ERK和HSP-70的抑制剂可同时使运动预处理产生的脑保护作用消失。磷酸化ERK1/2抑制剂可以有效减少脑组织受损,但不能导致HSP-70蛋白表达降低。这个现象表明,在运动预处理后的缺血性脑损伤中,HSP-70并非ERK1/2的下游调节蛋白。之前已有研究表明,HSP-70可通过抑制细胞凋亡诱导因子(apoptosis-inducing factor,AIF)并促进抗凋亡蛋白B淋巴细胞瘤-2基因(B-cell lymphoma-2,Bcl-2)家族,产生抗细胞凋亡作用[12]。ERK介导的信号通路在缺血诱导的细胞凋亡过程中发挥重要作用,可能与调节Bcl-2相关X蛋白(Bcl-2 associated x protein,Bax)蛋白/Bcl-2蛋白的表达有关[13-14]。运动预处理影响Bcl-2和Bax蛋白表达产生脑保护作用的机制与低氧预处理的机制相类似,Bcl-2和Bax分别是调控神经元凋亡分子家族中的核心成员[15]。王璐等也认为运动预处理能减少力竭运动诱导的大鼠大脑皮质细胞凋亡,产生脑细胞保护作用,其对细胞凋亡的调控作用可能是通过影响Bcl-2和Bax蛋白表达而实现的[16]。Cho和Ji等认为,原位末端转移酶标记技术(TdT-mediated dUTP Nick-End Labeling,TUNEL)中显示的阳性细胞代表凋亡细胞,其中半胱胺酸蛋白酶蛋白-3(caspase-3)是细胞凋亡的主要执行者之一[17-18]。Choi等研究发现短期跑步锻炼抑制缺氧缺血性损伤所诱导的DNA分裂,有效降低caspase-3的表达,从而对脑组织细胞凋亡产生抑制作用[19]。Zhang等也发现运动预处理可减小缺血性脑损伤脑梗死体积,减少神经元凋亡,产生神经保护作用,其机制可能与抑制caspase-3和上调Bcl-2的表达有关[20]。Zhao等还发现运动训练降低细胞色素C和AIF的释放,减少AIF迁移至细胞核并抑制caspases激活,从而阻断关键的细胞凋亡途径[21]。我们可以认为,运动预处理可以通过增加ERK 1/2和HSP-70的表达诱发脑缺血耐受,其中细胞凋亡诱导因子和抗凋亡蛋白发挥着重要作用。
2 脑血管生成及神经再生
运动预处理通过多种机制诱导脑缺血耐受,包括促进神经血管生成和血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达[3]。Thomas等在动物实验中发现跑步训练可刺激血管生成和神经再生[22]。磁共振脑血管成像(magnetic resonance angiography,MRA)可以有效检测脑血管发生的细微变化。Bullitt研究发现健康受试者在运动训练以后,使用MRA检测脑血管的情况时发现微血管数量发生变化[23]。Isaacs等认为较大强度的运动预处理导致中年雌性大鼠小脑中毛细血管的密度明显增加[24];同时运动训练也能提高大鼠脑皮质运动区的血管新生并增强中年大鼠纹状体脑血管的完整性[25-27]。此外,Hu等发现7~14 d的运动活动可以提高微血管生成重要标志物CD31的表达[28]。Rhyu等在动物实验中发现适当的运动训练导致猴脑皮质血管密度增加,但在运动结束后3个月时血管密度又回到训练前水平,说明持续的运动训练才能发挥脑保护作用[29]。Zwagerman等认为运动预处理明显增加大鼠短暂性脑缺血发作再灌注过程中脑血流量[30]。Zhang等研究表明运动训练增加脑缺血损伤后脑皮质微血管密度,改善血液流动能力,同时减少脑梗死体积,从而促进神经功能恢复[31]。这其中所涉及的血管生成过程可能与Tie-2、p-Akt蛋白的表达增加有关。Zhang等发现缺血前跑步机训练可以通过调节脑血流量(cerebral blood flow,CBF)和内皮素-1(endothelin-1,ET-1)而防止缺血性脑组织损伤[32]。
VEGF在血管生成的过程中发挥着关键作用,运动预处理通过上调VEGF和脑源性神经营养因子(brain derived neurotrophic factor,BDNF)增加大鼠脑皮质和纹状体的血管密度[26]。Kang等研究指出运动预处理通过增加VEGF在运动皮层的表达来促进微血管的完整性[33]。Matsuda等认为局部缺血后运动预处理可上调中期因子(midkine,MK)、血小板内皮细胞黏附分子1(platelet endothelial cell adhesion molecule-1,PECAM-1)和神经生长因子,以改善梗死区周围的血管生成[34]。Ma等研究指出运动预处理有效增加VEGF和基质后金属基质蛋白酶-2(matrix metalloprotein-2,MMP-2)的基因和蛋白表达[35]。此外,运动预处理提高了胰岛素样生长因子(insulin-like growth factors,IGF)的表达,其与神经、血管生成密切相关[36-37]。Lee等发现脑缺血后促血管生成素(angiopoietins,Ang)及其受体Tie-2构成的Ang/ Tie-2系统在血管新生中发挥了关键性作用[38]。研究还发现适当强度的运动训练在急性脑缺血病发生后导致脑梗死体积减小,同时增加脑缺血区周围的血管密度。这一机制可能与促进Ang-1、Tie-2以及其下游磷脂酰肌醇3激酶(Phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,也称为Serine/threonine Kinase,Akt)的表达有关。
BDNF在增加突触可塑性和促进神经再生方面发挥着重要作用。Thomas等研究指出运动训练提高包括BDNF在内的多种生长因子表达水平,对于细胞存活、神经突生长,以及其他形式的神经再生具有重要意义[22]。Padilla等发现跑步训练调节BDNF和突触蛋白I的mRNA表达,促进脑卒中患者更好地恢复[39]。Liu等研究表明运动训练促进线粒体功能,增加BDNF和脑抗氧化酶的表达,从而保持脑能量代谢稳定[40]。Yang等研究发现主动运动训练显著增加BDNF的表达,后者通过上调小鼠大脑皮层和海马区DNA修复的酶脱嘌呤/脱嘧啶核酸内切酶-1(Apurinic/apyrimidinic endonuclease-1,APE1)的表达,以增强DNA的修复,减轻神经元损伤[41]。神经营养蛋白4(Neurotrophin-4,NT-4)属于神经营养因子家族,与BDNF相类似,都具有脑保护作用。Chung等发现跑步机训练改变了NT-4及其受体trkB的表达,减轻大鼠缺血性脑损坏程度[42]。Zheng等研究表明运动训练直接影响神经功能恢复,这一过程与激活IGF-1/ Akt信号通路导致神经祖细胞数量增加有关[43]。Zhang等研究表明运动预处理增加梗死区周围IGF-1的表达及细胞增殖,促进脑缺血后神经再生[31]。我们归纳认为,运动预处理通过调整一系列相关蛋白的表达,促进脑神经血管再生,同时增加脑血流量,从而发挥脑神经保护作用,保持神经血管单元的完整性。
3 谷氨酸兴奋性毒性
缺血性脑卒中后谷氨酸的过量释放加重脑组织损伤程
度[44]。Danbolt等认为谷氨酸转运体1(Glutamate transporter-1, GLT-1)在去除脑组织谷氨酸时发挥最重要的作用[45]。Yang等发现运动预处理上调脑缺血后GLT-1的表达,减少细胞外谷氨酸浓度,降低脑梗死体积和改善神经功能[46]。Kalandadze等发现蛋白激酶C(protein kinase C,PKC)的激活可降低细胞表面GLT-1的表达,这可能会抑制细胞外谷氨酸的消除[47]。此外,P13K/ Akt通路也参与这一保护机制[48]。
Zhang等认为缺血前运动预处理可以抑制谷氨酸过度释放,这可能会涉及事件相关激酶ERK1/2的变化[49]。Wang等研究表明运动预处理通过调节兴奋性氨基酸转运蛋白2(excitatory amino acid transporters 2,EAAT-2)和ERK1/2的表达,诱导脑缺血耐受[50]。Zhang等的研究还发现运动预处理能抑制谷氨酸受体的表达,如代谢型谷氨酸受体5(metabotropic glutamate receptors 5,mGluR5)和N-甲基-D-天冬氨酸受体亚基2B型(N-methyl-D-aspartate receptor 2B subunit,NR2B),减轻谷氨酸过度释放的神经毒性[51]。Wang等认为运动预处理可以通过上调GLT-1表达促进缺血性损伤后谷氨酸的摄取,抑制NR2B和mGluR5的表达水平,以减少谷氨酸兴奋性毒性,这可能涉及两条信号通路:PKC-A-GLT-1-谷氨酸和PI3K/Akt信号-GLT-1-谷氨酸[52]。因此,运动预处理可以通过调节谷氨酸系统的兴奋性毒性诱导脑缺血耐受。
4 炎症反应
脑缺血性损伤可迅速引发缺血后的炎症反应。正常的炎症反应可以有效地减少进入机体的病原微生物,以此来保持我们的机体健康;但是炎症反应的过度活化进一步加重脑组织的损伤。Jander等发现炎症介质在保护性预处理过程中发挥着明显作用,成为缺血性脑卒中后防治的重要靶点[53]。
Wang等研究表明炎症反应在急性缺血性脑卒中中发挥重要作用,神经元损伤加重白细胞浸润、微血管损伤和自由基的产生[54]。Berti等认为许多炎性细胞因子如肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素1β(interleukin-1β, IL-1β)和白细胞介素6(interleukin-6,IL-6),都参与缺血性脑卒中后的炎症反应[55]。Park等发现运动预处理通过调节TNF-α和IL-1β可部分阻止沙鼠脑缺血后海马神经元凋亡[56]。Ding等认为运动预处理可以通过降低炎症介质的表达和引起白细胞的积聚,降低脑缺血/再灌注损伤[57]。运动预处理可以有效降低脑缺血区皮层上TNF-α受体表达,这一结论表明TNF-α参与多次重复运动预处理诱导的脑缺血耐受[58]。Laflamme等研究表明,Toll样受体4(toll like receptor 4,TLR4)在中枢神经系统内的表达是其介导脑缺血后炎症反应的基础[59]。脑缺血前的运动预处理可以有效下调TLR4的表达,降低脑组织损伤[60],降低其引发的炎性细胞因子级联反应[61],通过下调TLR2和TLR4抑制核因子-kB(nuclear factor-kB,NF-kB)和髓样分化因子(myeloiddifferentiationfactor88,MyD88)的过度表达[62],从而减轻脑缺血损伤中白细胞迁移、渗透和积累。
最新相关研究表明,脑缺血再灌注后24 h,在运动预处理组血清中TNF-α、IL-1β及IL-6的含量均显著降低,脑缺血区域皮质的病理性损伤明显减轻,神经功能得到明显改善。这表明运动预处理可降低脑缺血再灌注损伤过程中与炎症反应相关因子的浓度,有效抑制由于炎症所引起的级联反应,因而减轻脑缺血再灌注后脑组织的损伤,发挥脑神经系统保护作用[63]。
5小结
综上所述,运动预处理通过抑制神经细胞凋亡,促进神经血管再生,抑制谷氨酸过度释放,减轻炎症反应,以诱导脑缺血耐受。未来很可能会更多通过分子机制层面来探讨这一耐受机制。无论以什么样的方法和形式来阐明运动预处理诱导脑缺血耐受的机制都将有利于提高人们对缺血性脑损伤的认识,为运动训练作为缺血性脑卒中的有效防治措施提供坚实的理论基础,鼓励具有脑卒中危险因素的患者积极参加各种运动项目。
[1]卫生部.2010中国卫生统计年鉴[D].北京:中国协和医科大学出版社,2010.
[2]饶明利.中国脑血管病防治指南(试行版)[M].卫生部疾病控制司中华医学会神经病学分会,2005.
[3]Zhang F,Wu Y,Jia J.Exercise preconditioning and brain ischemic tolerance[J].Neuroscience,2011,177:170-176.
[4]Broughton BR,Reutens DC,Sobey CG.Apoptotic mechanisms after cerebral ischemia[J].Stroke,2009,40(5):e331-e339.
[5]Niizuma K,Yoshioka H,Chen H,et al.Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia[J].Biochim BiophysActa,2010,1802(1):92-99.
[6]Zhang F,Yin W,Chen J.Apoptosis in cerebral ischemia:executional and regulatory signaling mechanisms[J].Neurol Res, 2004,26(8):835-845.
[7]Beilharz EJ,Williams CE,Dragunow M,et al.Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat:evidence for apoptosis during selective neuronal loss[J].Brain Res Mol Brain Res,1995,29(1):1-14.
[8]Tahamtan M,Allahtavakoli M,Abbasnejad M,et al.Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion(4-VO) in rats[J].Arch Iran Med,2013,16(12):697-704.
[9]Zhang L,Hu X,Luo J,et al.Physical exercise improves functional recovery through mitigation of autophagy,attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats[J].BMC Neurosci,2013,14:46.
[10]Chaudhry K,Rogers R,Guo M,et al.Matrix metalloproteinase-9(MMP-9)expression and extracellular signal-regulated kinase 1 and 2(ERK1/2)activation in exercise-reduced neuronal apoptosis after stroke[J].Neurosci Lett,2010,474(2): 109-114.
[11]Liebelt B,Papapetrou P,Ali A,et al.Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70(heat shock protein-72)and extracellular-signal-regulated-kinase 1/2[J].Neuroscience,2010,166(4):
1091-1100.
[12]Ohtsuka K,Suzuki T.Roles of molecular chaperones in the nervous system[J].Brain Res Bull,2000,53(2):141-146.
[13]Li DY,Tao L,Liu H,et al.Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion[J].Apoptosis,2006,11(6):923-930.
[14]Sawatzky DA,Willoughby DA,Colville-Nash PR,et al.The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-X-L and Bax in the resolution of acute inflammation in vivo[J].Am J Pathol,2006,168(1):33-41.
[15]张颜波,吕国蔚,杨明峰,等.低氧预适应小鼠海马Bcl-2表达和Caspase-3活性的变化[J].中华神经科杂志,2007,40(8): 553-555.
[16]王璐,邓文骞,袁琼嘉.运动预处理对力竭运动诱导的大鼠大脑皮质细胞凋亡的影响[J].中国运动医学杂志,2012,31(7): 602-606.
[17]Cho HS,Shin MS,Song W,et al.Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats[J].J Exerc Rehabil,2013,9(3): 354-361.
[18]Ji ES,Ko IG,Cho JW,et al.Treadmill exercise inhibits apoptotic neuronal cell death with suppressed vascular endothelial growth factor expression in the retinas of the diabetic rats[J].J Exerc Rehabil,2013,9(3):348-353.
[19]Choi JH,Kim TS,Park JK,et al.Short-term treadmill exercise preserves sensory-motor function through inhibiting apoptosis in the hippocampus of hypoxic ischemia injury rat pups[J].J Exerc Rehabil,2013,9(5):457-462.
[20]Zhang P,Zhang Y,Zhang J,et al.Early exercise protects against cerebral ischemic injury through inhibiting neuron apoptosis in cortex in rats[J].Int J Mol Sci,2013,14(3): 6074-6089.
[21]Zhao Z,Sabirzhanov B,Wu J,et al.Voluntary exercise preconditioning activates multiple anti-apoptotic mechanisms and improves neurological recovery after experimental traumatic brain injury[J/OL].J Neurotrauma.[2014-11-14].
[22]ThomasAG,DennisA,Bandettini PA,et al.The effects of aerobic activity on brain structure[J/OL].FrontPsychol.2012,3: 86.
[23]Bullitt E,Rahman FN,Smith JK,et al.The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography[J].Am J Neuroradiol,2009,30(10): 1857-1863.
[24]Isaacs KR,Anderson BJ,Alcantara AA,et al.Exercise and the brain:angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning[J].J Cereb Blood Flow Metab,1992,12(1):110-119.
[25]Swain RA,Harris AB,Wiener EC,et al.Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat[J].Neuroscience,2003,117 (4):1037-1046.
[26]Ding Y,Li J,Luan X,et al.Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin[J].Neuroscience,2004,124(3):583-591.
[27]Ding YH,Li J,Yao WX,et al.Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats[J].Acta Neuropathol,2006,112(1):74-84.
[28]Hu X,Zheng H,Yan T,et al.Physical exercise induces expression of CD31and facilitates neural function recovery in rats with focal cerebral infarction[J].Neurol Res,2010,32(4): 397-402.
[29]Rhyu IJ,Bytheway JA,Kohler SJ,et al.Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys[J].Neuroscience,2010,167(4):1239-1248.
[30]Zwagerman N,Sprague S,Davis MD,et al.Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke[J].Neurol Res,2010,32(5):523-529.
[31]Zhang P,Yu H,Zhou N,et al.Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model[J/OL].J Neuroeng Rehabil,2013,10:43.
[32]Zhang Q,Zhang L,Yang X,et al.The effects of exercise preconditioning on cerebral blood flow change and endothelin-1 expression after cerebral ischemia in rats[J].J Stroke Cerebrovasc Dis,2014,23(6):1696-1702.
[33]Kang KA,Seong H,Jin HB,et al.[The effect of treadmill exercise on ischemic neuronal injury in the stroke animal model: potentiation of cerebral vascular integrity][Article in Korean][J].J KoreanAcad Nurs,2011,41(2):197-203.
[34]Matsuda F,Sakakima H,Yoshida Y.The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats[J].Acta Physiol(Oxf),2011,201(2):275-287.
[35]Ma Y,Qiang L,He M.Exercise therapy augments the ischemia-induced proangiogenic state and results in sustained improvement after stroke[J].Int J Mol Sci,2013,14(4): 8570-8584.
[36]Carro E,Nunez A,Busiguina S,et al.Circulating insulin-like growth factor I mediates effects of exercise on the brain[J].J Neurosci,2000,20(8):2926-2933.
[37]Cotman CW,Berchtold NC,Christie LA.Exercise builds brain health:key roles of growth factor cascades and inflammation[J].Trends Neurosci,2007,30(9):464-472.
[38]Lee ST,Chu K,Jung KH,et al.Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia[J].Brain Res,2005,1058(1):120-128.
[39]Padilla J,Simmons GH,Bender SB,et al.Vascular effects of exercise:endothelialadaptationsbeyondactivemuscle beds[J].Physiology,2011,26(3):132-145.
[40]Liu W,Zhou C.Corticosterone reduces brain mitochondrial function and expression of mitofusin,BDNF in depression-like rodents regardless of exercise preconditioning[J].Psychoneuroendocrinology,2012,37(7):1057-1070.
[41]Yang JL,Lin YT,Chuang PC,et al.BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1[J].Neuromol Med,2014,16(1):161-174.
[42]Chung JY,Kim MW,Bang MS,et al.Increased Expression of Neurotrophin 4 Following Focal Cerebral Ischemia in Adult Rat Brain with Treadmill Exercise[J/OL].PloS One,2013,8 (3):e52461.
[43]Zheng HQ,Zhang LY,Luo J,et al.Physical exercise promotes recovery of neurological function after ischemic stroke in rats[J].Int J Mol Sci,2014,15(6):10974-10988.
[44]Kostandy BB.The role of glutamate in neuronal ischemic injury:the role of spark in fire[J].Neurol Sci,2012,33(2): 223-237.
[45]Danbolt NC.Glutamate uptake[J].Prog Neurobiol,2001,65 (1):1-105.
[46]Yang X,He Z,Zhang Q,et al.Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1[J].Int J Mol Sci,2012,13(8): 9447-9459.
[47]Kalandadze A,Wu Y,Robinson MB.Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter.Requirement of a carboxyl-terminal domain and partial dependence on serine 486[J].J Biol Chem, 2002,277(48):45741-45750.
[48]Zhang J,Deng Z,Liao J,et al.Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway[J].J Cereb Blood Flow Metab,2013,33 (4):567-574.
[49]Zhang F,Wu Y,Jia J,et al.Pre-ischemic treadmill training induces tolerance to brain ischemia:involvement of glutamate and ERK1/2[J].Molecules,2010,15(8):5246-5257.
[50]Wang X,Zhang M,Feng R,et al.Exercise pre-conditioning alleviates brain damage via excitatory amino acid transporter 2 and extracellular signal-regulated kinase 1/2 following ischemic stroke in rats[J].Mol Med Rep,2015,11(2):1523-1527.
[51]Zhang F,Jia J,Wu Y,et al.The effect of treadmill training pre-exercise on glutamate receptor expression in rats after cerebral ischemia[J].Int J Mol Sci,2010,11(7):2658-2669.
[52]Wang X,Zhang M,Yang SD,et al.Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats[J].Neuroscience,2014, 274:393-402.
[53]Jander S,Schroeter M,Stoll G.Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia[J].J Neuroimmunol,2000,109(2): 181-187.
[54]Wang Q,Tang XN,Yenari MA.The inflammatory response in stroke[J].J Neuroimmunol,2007,184(1):53-68.
[55]Berti R,Williams AJ,Moffett JR,et al.Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury[J].J Cereb Blood Flow Metab,2002,22(9):1068-1079.
[56]Park S,Kim DS,Kang S.Exercise training attenuates cerebral ischemic hyperglycemia by improving hepatic insulin signaling and beta-cell survival[J].Life Sci,2013,93(4):153-160.
[57]Ding YH,Young CN,Luan X,et al.Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion[J].Acta Neuropathol,2005,109(3):237-246.
[58]Ding YH,Mrizek M,Lai Q,et al.Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation:an in vivo and in vitro study[J].Curr Neurovasc Res,2006,3(4):263-271.
[59]Laflamme N,Echchannaoui H,Landmann R,et al.Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria[J].Eur J Immunol,2003,33(4): 1127-1138.
[60]Mcfarlin BK,Flynn MG,Campbell WW,et al.Physical activity status,but not age,influences inflammatory biomarkers and toll-like receptor 4[J].J Gerontol A Biol Sci Med Sci,2006,61 (4):388-393.
[61]Gleeson M,Mcfarlin B,Flynn M.Exercise and toll-like receptors[J].Exerc Immunol Rev,2006,12:34-53.
[62]Ma Y,He M,Qiang L.Exercise therapy downregulates the overexpression of TLR4,TLR2,MyD88 and NF-κB after cerebral ischemia in rats[J].Int J Mol Sci,2013,14(2):3718-3733.
[63]朱路文,叶涛,吴孝军,等.运动预处理对脑缺血再灌注大鼠血清炎症因子水平的影响[J].中国康复理论与实践,2015,21 (1):22-25.
Advance in Mechanism of Cerebral Ischemia Tolerance Induced by Exercise Preconditioning(review)
WU Xiao-jun1,ZHU Lu-wen2,LI Hong-yu1,TANG Qiang2
1.Heilongjiang University of Chinese Medicine,Harbin,Heilongjiang 150040,China;2.The Second Hospital Affiliated to Heilongjiang University of Chinese Medicine,Harbin,Heilongjiang 150001,China
Cerebral ischemia tolerance was induced by exercise preconditioning,which protected the brain from injury.The detailed mechanism of exercise preconditioning protecting cerebral ischemia injury was complicated,which involving the regulation of multiple target point and multi-path,such as inhibiting cell apoptosis,promoting angiogenesis in the brain,inhibiting the excessive activation of glutamic acid as well as the regulation of inflammation.More mechanisms were still unknown.
cerebral ischemia;tolerance;exercise preconditioning;review
10.3969/j.issn.1006-9771.2015.06.006
R743.3
A
1006-9771(2015)06-0657-05
2015-03-17
2015-04-20)
1.哈尔滨市科技创新人才专项基金(青年后备人)(No.2014RFQGJ150);2.黑龙江中医药大学领军人才计划项目(No.2012RCL02);3.黑龙江省高校科技创新团队计划项目(No.2013TD007)。
1.黑龙江中医药大学,黑龙江哈尔滨市150040;2.黑龙江中医药大学附属第二医院,黑龙江哈尔滨市150001。作者简介:吴孝军(1990-),男,辽宁辽阳市人,硕士研究生,主要研究方向:脑卒中中医康复的基础研究。通讯作者:唐强(1963-),男,四川大竹县人,博士,教授,主要研究方向:神经系统疾病中医康复基础与临床。E-mail:tangqiang1963@163.com。