APP下载

肠源性尿毒症毒素硫酸对甲酚和硫酸吲哚酚的研究进展

2015-01-22成云,曹学森,邹建洲

中国临床医学 2015年6期
关键词:吲哚硫酸尿毒症

·综述·

肠源性尿毒症毒素硫酸对甲酚和硫酸吲哚酚的研究进展

成云曹学森邹建洲

(复旦大学附属中山医院肾内科,上海市肾病与透析研究所, 上海200032)

关键词

Research Development of Enterogenous Uremic Toxins: P-cresyl Sulfate and Indoxyl SulfateCHENGYunCAOXuesenZOUJianzhou

DepartmentofNephrology,ZhongshanHospital,FudanUniversity,Shanghai200032,China

尿毒症毒素是指终末期肾病(end-stage renal disease,ESRD)时不能经尿液清除、潴留在体内且有毒性作用的物质。据欧洲尿毒症毒素协作组(EUTox)统计,至2011年4月已发现160种尿毒症毒素[1]。尿毒症毒素根据其理化性质可分为3类。(1)不能与蛋白质结合的水溶性小分子物质:相对分子质量通常小于500,较易经血液透析清除,如尿素、肌酐;(2)蛋白质结合物质:大多数相对分子质量较小,很难通过血液透析清除,如硫酸对甲酚(p-cresyl sulfate,PCS)、硫酸吲哚酚(indoxyl sulfate,IS);(3)中分子物质:相对分子质量通常大于500,常规血液透析效果不理想,如甲状旁腺素、β2微球蛋白。尿毒症毒素根据其来源分类也可分为3类,(1)内源性代谢产物:自身代谢产生,如非对称性二甲基精氨酸(asymmetric dimethylarginine,ADMA)[2];(2)微生物代谢产物:主要是肠道菌群代谢物质,如吲哚类、酚类;(3)外源性摄入物质:如草酸盐[3]。研究[4- 5]表明,慢性肾脏病(chronic kidney disease,CKD)患者肠道菌群的种类和数量与健康人群显著不同,其毒性产物与CKD及其并发症的进展密切相关。其中,PCS和IS是当前研究最多的肠源性尿毒症毒素,本文对其研究进展作一综述。

1PCS、IS的产生和代谢

PCS主要在肠道产生,相对分子质量188,与血浆白蛋白结合率为94%[6]。肠道厌氧菌将食物中的苯丙氨酸和酪氨酸转变为4-羟基苯乙酸。4-羟基苯乙酸脱羧为对甲酚,大部分对甲酚经肠道黏膜吸收,在肠道上皮细胞磺基转移酶的作用下转化为PCS[7]。PCS主要通过肾小管基底膜侧的有机阴离子转运体(organic anion transporter,OAT)分泌到肾小管管腔,经尿液排出[8]。

IS主要在肠道产生,相对分子质量251[9],蛋白结合率达90%以上。食物中的色氨酸经大肠埃希菌分解产生吲哚,吲哚经门静脉进入肝脏经羟化、硫酸化,最终生成IS。IS主要通过肾小管OAT分泌、排泄[10]。

2PCS、IS的肾脏毒性

PCS可通过促进肾脏纤维化加快肾脏病进展、肾功能下降[11]。PCS主要通过以下机制促进肾脏纤维化:(1)PCS可显著增加肾组织肾素、血管紧张素Ⅱ1型受体(AT1R)表达,激活肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS),进而促进肾间质成纤维细胞的增殖与分化,加重肾组织纤维化[12];(2)PCS具有促炎作用,可促进肾间质单核细胞/巨噬细胞浸润[11],上调促炎因子表达[13],引起肾间质纤维化;(3)体外实验证实,PCS可促进小鼠近端肾小管上皮细胞炎性相关基因的表达,如转化生长因子-β(transforming growth factor-β,TGF-β)、白介素-6(interleukin-6,IL-6)等[14],而TGF-β可促进肾小管间质纤维化[15],IL-6可通过诱导肾脏纤维化相关基因及内皮素-1基因的表达加速CKD的进展[16];(4)Klotho基因可编码一种参与成纤维细胞生长因子受体构成的跨膜蛋白,这种跨膜蛋白可延缓肾脏纤维化进程,发挥肾脏保护作用[17-18],而PCS通过促进DNA甲基转移酶表达,使Klotho基因超甲基化,进而抑制Klotho基因表达[19],使Klotho基因产物的肾脏保护作用下降或消失,促进肾脏纤维化,加速肾脏病进展。

IS促进肾脏纤维化的机制主要有:(1)IS促进肾小管上皮细胞活性氧簇(reactive oxygen species,ROS)的产生,激活核转录因子κB(nuclear factor-κB,NF-κB)、p53、 细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)等调节因子,使单核细胞趋化蛋白-1(monocyte chemotactic protein-1,MCP-1)、细胞间黏附分子-1(intercellular adhesion molecule-1,ICAM-1)的表达上调,引起单核细胞/巨噬细胞在小管间质聚集,进而促进肾脏纤维化[20-21];(2)IS使肾组织肾素、血管紧张素原、AT1R表达增加,AT2R表达减少,进而通过激活RAAS及促进TGF-β表达,使肾间质细胞向成纤维细胞转化,引起肾脏纤维化[22];(3)IS也可通过促进Klotho基因超甲基化而促进肾脏纤维化[19]。

3PCS、IS的心血管毒性

大量研究[7,23-24]证实,PCS水平与CKD患者心血管疾病的发生及全因死亡独立相关。Schepers等[13]研究发现,PCS可诱导白细胞产生自由基,进而引起ESRD患者的血管损伤。Watanabe等[25]研究发现,PCS可使人脐静脉内皮细胞及人主动脉平滑肌细胞内NADPH氧化酶(NAPDH oxidase,NOX)的表达显著增加,促进细胞内产生ROS,进而损害血管内皮细胞及平滑肌细胞。Han等[26]研究发现,PCS可通过增强NOX活性、增加ROS,促进心肌细胞凋亡。

研究[27]显示,IS可提高ESRD患者全因死亡率及心血管事件发病率,其机制主要有以下两方面。(1)IS可促进血管损伤,研究[28]发现,IS可致循环中内皮损伤标志物内皮微粒(endothelial microparticles,EMPs)产生增加,提示其有致血管内皮损伤作用。IS引起内皮损伤主要是通过促氧化应激作用实现的。IS可促进NOX活化、使内皮细胞产生的ROS增多[29],升高的ROS可通过激活NF-κB,增加MCP-1及ICAM-1的表达[30],导致血管内皮损伤。此外,IS可以通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase ,MAPK)途径促进血管平滑肌细胞(vascular smooth muscle cell ,VSMC)增殖[31];并可通过促进骨母细胞特异性蛋白表达增加而加重动脉钙化、使动脉壁增厚[32]。近年来研究[33]证实,IS可促进大鼠主动脉细胞衰老相关蛋白,如p16INK4a、p21WAF1/CIP1的表达,提示IS有加速动脉衰老作用。(2)IS可加速心肌损伤,研究[34]发现,IS可通过促氧化应激、削弱抗氧化屏障作用促进心肌纤维化及心肌细胞肥大。此外,IS可通过抑制单磷酸腺苷活化蛋白激酶/解偶联蛋白2(AMP-activated protein kinase/uncoupling protein 2,AMPK/UCP2)途径促进心肌肥大[35]。

4PCS、IS的其他作用

近年研究提示,PCS可能与CKD相关的胰岛素抵抗有关。PCS通过激活胰岛素信号转导通路中的ERK1/2诱导小鼠出现胰岛素抵抗,使其脂肪含量减少,脂肪在肝脏及肌肉重新分布[36]。骨代谢方面,Tanaka等[37]研究发现,PCS通过激活c-Jun 氨基末端激酶( c-Jun N-terminal kinase,JNK) 和p38分裂原激活蛋白激酶(p38 mitogen activated protein kinases,p38MAPK)信号转导途径导致成骨细胞功能障碍,引起肾性骨病。

Kim等[38]研究发现,IS可通过抑制成骨细胞的分化、诱导成骨细胞凋亡,从而引起骨骼病变。此外,研究[39]发现,IS可导致体外培养的成骨细胞抵抗甲状旁腺激素,从而导致肾性骨病的发生。

5PCS和IS的清除

PCS和IS均为蛋白质高亲和力毒素,常规透析方法难以清除。Meert等[40]研究发现,透析中增加对流量也利于PCS及IS的清除。不同材质的透析膜对这两种毒素的清除率无差异[41]。Meijers等[42]发现,血浆分离吸附技术对PCS的清除效果显著优于高通量透析,但血浆分离吸附技术成本高昂,目前无法在临床推广。

此外,由于PCS和IS主要由肠道产生,理论上可以通过改变肠道菌群降低PCS和IS的浓度,但目前尚无相关研究。目前研究较多的肠道吸附剂,如AST-120,Owada 等[43]的研究显示,AST-120可清除部分肠源性毒素,并可延缓尿毒症大鼠的肾功能恶化。

6展望

目前对PCS及IS 作用机制的了解已较深入,但是仍无有效的、适合临床应用的清除PCS及IS的透析方式或药物,需要进一步探索。

参考文献

[ 1 ]Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins[J]. J Am Soc Nephrol, 2012,23(7):1258-1270.

[ 2 ]Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age?[J]. Am J Kidney Dis, 2005,46(2):186-202.

[ 3 ]Goldfarb DS, Modersitzki F, Asplin JR. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria[J]. Clin J Am Soc Nephrol, 2007,2(4):745-749.

[ 4 ]Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora[J]. Kidney Int, 2013,83(2):308-315.

[ 5 ]Wu IW, Hsu KH, Lee CC, et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease[J]. Nephrol Dial Transplant, 2011,26(3):938-947.

[ 6 ]Niwa T. Update of uremic toxin research by mass spectrometry[J]. Mass Spectrom Rev, 2011,30(3):510-521.

[ 7 ]Bammens B, Evenepoel P, Keuleers H, et al. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients[J]. Kidney Int, 2006,69(6):1081-1087.

[ 8 ]Miyamoto Y, Watanabe H, Noguchi T, et al. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney[J]. Nephrol Dial Transplant, 2011,26(8):2498-2502.

[ 9 ]Dou L, Bertrand E, Cerini C, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair[J]. Kidney Int, 2004,65(2):442-451.

[10]Deguchi T, Ohtsuki S, Otagiri M, et al. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney[J]. Kidney Int, 2002,61(5):1760-1768.

[11]Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis[J]. Kidney Int Suppl, 2010(119):S22-S26.

[12]Huang Y, Wongamorntham S, Kasting J, et al. Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin Ⅱ-independent mechanisms[J]. Kidney Int, 2006,69(1):105-113.

[13]Schepers E, Meert N, Glorieux G, et al. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production[J]. Nephrol Dial Transplant, 2007,22(2):592-596.

[14]Sun CY, Hsu HH, Wu MS. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells[J]. Nephrol Dial Transplant, 2013,28(1):70-78.

[15]Wang L, Cao AL, Chi YF, et al. You-gui Pill ameliorates renal tubulointerstitial fibrosis via inhibition of TGF-beta/Smad signaling pathway[J]. J Ethnopharmacol, 2015,169:229-238.

[16]Zhang W, Wang W, Yu H, et al. Interleukin 6 underlies angiotensin Ⅱ-induced hypertension and chronic renal damage[J]. Hyp ertension, 2012,59(1):136-144.

[17]Barker SL, Pastor J, Carranza D, et al. The demonstration of alpha Klotho deficiency in human chronic kidney disease with a novel synthetic antibody[J]. Nephrol Dial Transplant, 2015,30(2):223-233.

[18]Haruna Y, Kashihara N, Satoh M, et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene[J]. Proc Natl Acad Sci USA, 2007,104(7):2331-2336.

[19]Sun CY, Chang SC, Wu MS. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation[J]. Kidney Int, 2012,81(7):640-650.

[20]Shimizu H, Bolati D, Higashiyama Y, et al. Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-kappaB, p53, ERK, and JNK in proximal tubular cells[J]. Life Sci, 2012,90(13-14):525-530.

[21]Shimizu H, Yisireyili M, Higashiyama Y, et al. Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-kappaB and p53 in proximal tubular cells[J]. Life Sci, 2013,92(2):143-148.

[22]Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition[J]. PLoS One, 2012,7(3):e34026.

[23]Liabeuf S, Barreto DV, Barreto FC, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease[J]. Nephrol Dial Transplant, 2010,25(4):1183-1191.

[24]Wu IW, Hsu KH, Hsu HJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients--a prospective cohort study[J]. Nephrol Dial Transplant, 2012,27(3):1169-1175.

[25]Watanabe H, Miyamoto Y, Enoki Y, et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress[J]. Pharmacol Res Perspect, 2015,3(1):e92.

[26]Han H, Zhu J, Zhu Z, et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes[J]. J Am Heart Assoc, 2015,4(6):e001852.

[27]Melamed ML, Plantinga L, Shafi T, et al. Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators[J]. BMC Nephrol, 2013,14:134.

[28]Faure V, Dou L, Sabatier F, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure[J]. J Thromb Haemost, 2006,4(3):566-573.

[29]Dou L, Jourde-Chiche N, Faure V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells[J]. J Thromb Haemost, 2007,5(6):1302-1308.

[30]Tumur Z, Shimizu H, Enomoto A, et al. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation[J]. Am J Nephrol, 2010,31(5):435-441.

[31]Yamamoto H, Tsuruoka S, Ioka T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells[J]. Kidney Int, 2006,69(10):1780-1785.

[32]Adijiang A, Goto S, Uramoto S, et al. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats[J]. Nephrol Dial Transplant, 2008,23(6):1892-1901.

[33]Adijiang A, Higuchi Y, Nishijima F, et al. Indoxyl sulfate, a uremic toxin, promotes cell senescence in aorta of hypertensive rats[J]. Biochem Biophys Res Commun, 2010,399(4):637-641.

[34]Yisireyili M, Shimizu H, Saito S, et al. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats[J]. Life Sci, 2013,92(24-26):1180-1185.

[35]Yang K, Xu X, Nie L, et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway[J]. Toxicol Lett, 2015,234(2):110-119.

[36]Koppe L, Pillon NJ, Vella RE, et al. p-Cresyl sulfate promotes insulin resistance associated with CKD[J]. J Am Soc Nephrol, 2013,24(1):88-99.

[37]Tanaka H, Iwasaki Y, Yamato H, et al. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways[J]. Bone, 2013,56(2):347-354.

[38]Kim YH, Kwak KA, Gil HW, et al. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells[J]. BMC Pharmacol Toxicol, 2013,14:60.

[39]Nii-Kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells[J]. Kidney Int, 2007,71(8):738-743.

[40]Meert N, Eloot S, Schepers E, et al. Comparison of removal capacity of two consecutive generations of high-flux dialysers during different treatment modalities[J]. Nephrol Dial Transplant, 2011,26(8):2624-2630.

[41]Ficheux A, Gayrard N, Szwarc I, et al. The use of SDS-PAGE scanning of spent dialysate to assess uraemic toxin removal by dialysis[J]. Nephrol Dial Transplant, 2011,26(7):2281-2289.

[42]Meijers BK, Weber V, Bammens B, et al. Removal of the uremic retention solute p-cresol using fractionated plasma separation and adsorption[J]. Artif Organs, 2008,32(3):214-219.

[43]Owada S, Maeba T, Sugano Y, et al. Spherical carbon adsorbent (AST-120) protects deterioration of renal function in chronic kidney disease rats through inhibition of reactive oxygen species production from mitochondria and reduction of serum lipid peroxidation[J]. Nephron Exp Nephrol, 2010,115(4):e101-e111.

中图分类号R692.5

文献标识码A

通讯作者邹建洲,E-mail:jianzzou@163.com

基金项目:上海市科学技术委员会基金项目(编号:15DZ0503402)

猜你喜欢

吲哚硫酸尿毒症
吲哚美辛肠溶Eudragit L 100-55聚合物纳米粒的制备
治疗尿毒症新型血液灌流吸附剂体外实验研究
HPV16E6与吲哚胺2,3-二氧化酶在宫颈病变组织中的表达
比较高通量血液透析与血液透析滤过在尿毒症患者中的应用效果
硫酸渣直接还原熔分制备珠铁
尿毒症可以预防吗
吲哚骨架7位的羟基化研究
金属催化下吲哚7位的修饰
2019年硫酸行业运行情况
2018磷复肥硫酸大数据发布