一个含有2n个非零元的极小谱任意符号模式矩阵
2015-01-13赵丽娟邵燕灵
赵丽娟,邵燕灵
(中北大学 理学院,山西 太原 030051)
一个含有2n个非零元的极小谱任意符号模式矩阵
赵丽娟,邵燕灵
(中北大学 理学院,山西 太原 030051)
研究了一个含有2n个非零元的符号模式矩阵,并运用幂零—雅可比方法和幂零—中心化方法证明该符号模式是极小谱任意的.
符号模式;谱任意;幂零—雅可比;幂零—中心化
0 引 言
引理 2[4](幂零-中心化方法)设S是n×n符号模式,B是S的一个指数为n的幂零实现.如果B的中心中满足条件C°BT=0的矩阵C只能是零矩阵,那么,S及其每一个母模式都是谱任意的.
1 主要结果
定理1当n≥7时,S的所有母模式都是谱任意的.
其中ai<0,i=1,...,n-4,n,aj>0,j=n-3,n-2,n-1.下面分别用两种不同的方法证明S的所有母模式都是谱任意的.
将上式第i行的λ倍加到第i+1行,i=1,2,...,n-1,然后再按第2,3,5,...,n-4,n-2,n-1,
n列依次展开,得:
(1)
所以
(2)
且
定理2S是极小谱任意的.
综上所述,S是极小谱任意符号模式.
[1] Leslie H. Handbook of Linear Algebra[M]. Bocaraton: CRC Press, 2007.
[2] Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2000, 308(1): 121-137.
[3] Britz T, McDonald J J, Olesky D D, et al. Minimal spectrally arbitrary sign patterns[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26(1): 257-271.
[4] Garnett C, Shader B L. The Nilpotent-Centralizer Method for spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2013, 438(10): 3836-3850.
[5] Cavers M S, Vander Meulen K N. Spectrally and inertially arbitrary sign patterns[J]. Linear Algebra and its Applications, 2005, 394:53-72.
[6] Gao Yu-bin, Shao Yan-ling. A spectrally arbitrary patterns[J]. Advances in Mathematics, 2006,35(5):551-555.
[7] Gao Yu-bin, Shao Yan-ling, Li Zhong-shan. A Note on spectrally arbitrary sign patterns[J].JP Journal of Algebra , Number Theory and Applications, 2008, 11: 15-35.
[8] Bergsma H, Kevin N, Vanderm, et al. Potentially nilpotent patterns and the Nilpotent-Jacobian method[J]. Linear Algebra and its Applications, 2012, 436: 4433-4445.
[9] Garnett C, Shader B L. A proof of the Tn conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns[J]. Linear Algebra and its Applications, 2012, 436(12):4451-4458.
[责任编辑:王军]
A class of minimally spectrally arbitrary pattern matrix with 2n nonzero entries
ZHAO Lijuan, SHAO Yanling
(School of Science, North University of China, Taiyuan 030051, China)
In this paper we give a new minimally spectrally arbitrary patterns with2n nonzero entries.The sign pattern has been proved to be minimally spectrally arbitrary by using Nilpotent-Jacobian method and Nilpotent-Centralizer method.
sign pattern;spectrally arbitrary; nilpotent-Jacobian; nilpotent-centralizer
2014-12-09
山西省回国留学人员科研资助项目(12-070)
赵丽娟(1989-),女,山西大同人,中北大学硕士研究生,主要从事组合数学方面的研究.
O157
A
1672-3600(2015)09-0007-04