Stathmin对卵巢癌C13K细胞增殖和顺铂敏感性影响研究
2014-11-24石英张军港王常玉
石英+张军港+王常玉
[摘要] 目的 探讨微管调节蛋白Stathmin对卵巢癌顺铂耐药细胞C13K增殖和化疗敏感性的影响。 方法 应用蛋白质印记法检测卵巢癌顺铂敏感性OV2008细胞和耐药性C13K细胞Stathmin表达差异;选择C13K为实验细胞,应用siRNA靶向沉默Stathmin(Stathmin-siRNA组),以未转染细胞为空白对照组,以转染阴性干扰为阴性对照组,利用蛋白质印记法检测siRNA转染效果,MTT法测定转染对细胞增殖和顺铂敏感性的影响,流式细胞仪测定转染对顺铂引起的细胞周期的变化。 结果 Stathmin在细胞C13K的表达较OV2008的表达明显增加。与空白对照组和阴性对照组相比,Stathmin-siRNA组中Stathmin表达明显降低,C13K细胞的增殖明显抑制,Stathmin-siRNA组顺铂半数致死量IC50[(15.41±1.08)μg/mL]明显降低。Stathmin-siRNA组顺铂诱导的G2/M期(27.48±0.76)%明显高于顺铂处理的对照组。 结论 干扰Stathmin能明显抑制C13K细胞的增殖,增强卵巢癌对顺铂的敏感性,为卵巢癌治疗提供新的前景。
[关键词] Stathmin;卵巢癌;siRNA;增殖;顺铂
[中图分类号] R737.31 [文献标识码] A [文章编号] 1673-9701(2014)32-0001-04
Influences of stathmin on C13K cell proliferation and chemosensitivity of cisplatin in ovarian cancer
SHI Ying1,3 ZHANG Jungang2 WANG Changyu3
1.Department of Obstetrics and Gynecology, Zhejiang Provincial Peoples Hospital, Hangzhou 310014, China; 2.Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Peoples Hospital, Hangzhou 310014, China; 3.Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
[Abstract] Objective To explore the role of stathmin on the C13K cell proliferation and chemosensitivity of cisplatin in ovarian cancer. Methods The stathmin expression in cisplatin-sensitive OV2008 and resistant C13K cells was detected by western blot. Effective stathmin siRNA was transfected into ovarian cancer C13K cells(Stathmin-siRNA group). Non-transfected cells were used as blank control and negative siRNA as negative control. Western blot was used to verify the siRNA interference result. MTT was used to measure the cell proliferation and the change of chemosensitivity to cisplatin. Flow cytometry was used to detect the change of cisplatin-induced cell cycle arrest. Results Stathmin expression in C13K cells was higher than that in OV2008 cells. Compared to blank control group and negative control group, Stathmin protein was significantly reduced and the proliferation was significantly inhibited in stathmin-siRNA group, and the IC50 of cisplatin in stathmin-siRNA group [(15.41±1.08) μg/mL] was significantly lower. The cell cycle in G2/M phase induced by cisplatin in stathmin-siRNA group [(27.48±0.76)%] was significantly higher than those in control group. Conclusion Interfering with stathmin can effectively inhibit the proliferation of C13K cell and effectively increase cisplatin chemosensitivity, and provide new prospects for ovarian cancer treatment.
[Key words] Stathmin; Ovarian cancer; siRNA; Proliferation; Cisplatin
卵巢癌是一种常见的严重威胁妇女生命健康的恶性疾病,它的多药耐药性已成为影响患者生存的主要因素之一,因此寻找新的靶点进行干预以增强化疗的效果是治疗卵巢癌的关键点之一[1,2]。Stathmin是一种重要的微管调节蛋白,能有效调控细胞增殖、细胞周期进展、分化和运动等生物学行为过程[3,4]。Stathmin在多种肿瘤表达上调,下调Stathmin的表达可抑制肿瘤的增殖[5-7],我们前期的研究结果发现Stathmin蛋白在卵巢癌组织中呈明显高表达,与卵巢癌的临床分期、病理分级和淋巴转移的病理特征密切相关[8]。但Stathmin在体外对卵巢癌细胞的增殖和顺铂敏感性尚未明确。本研究设想通过检测卵巢癌顺铂耐药细胞株C13K和顺铂敏感细胞株OV2008中Stathmin的表达,明确其表达差异,进而通过干预Stathmin表达观察卵巢癌细胞增殖和顺铂敏感性变化,为临床更有效地治疗卵巢癌提供理论和实验依据。
1 材料与方法
1.1材料
人卵巢癌OV2008及C13K细胞株由加拿大Ben jam in K,Tsang 博士(Department of Obstetrics and Gynecology and Molecular University of Ottowa)惠赠。Stathmin siRNA 由上海Invitrogen技术有限公司设计并合成,Lipo2000阳离子脂质体购买于上海Invitrogen公司,Stathmin和GAPDH兔抗人一抗均购买于美国Santa Cruz公司。顺铂(DDP)和碘化丙啶(propidium iodine,PI)购买于美国Sigma公司。
1.2 方法
1.2.1 细胞培养 OV2008及C13K细胞用PRMI 1640培养基(含10%胎牛血清)在37℃含5%CO2的细胞培养箱中培养,两种卵巢癌细胞均呈贴壁性生长,选用对数生长期细胞进行实验。
1.2.2 蛋白质印记法检测Stathmin蛋白表达 细胞经SDS蛋白裂解液裂解获得蛋白后,BCA蛋白定量法测定细胞蛋白含量。蛋白变性后取30 μg蛋白上样,使用10%SDS聚丙烯酰胺凝胶电泳后转移至PVDF膜上,用5%脱脂奶粉封闭1 h,加入1∶500稀释的一抗4℃孵育过夜,加入1∶2000稀释的二抗室温孵育90 min,ECL增强发光显影,使用Bandscan 5.0图像分析软件进行光密度积分值分析。
1.2.3 转染细胞 将处于对数生长期的卵巢癌细胞接种于相应的培养板中(6孔板接种细胞数约为5×105/孔,96孔板约为1×105/孔),PRMI 1640培养基中不能含抗生素;细胞生长到融合度为30%~50%时,按OligofectamineTM Reagent(Invitrogen公司)说明书步骤进行寡核苷酸的细胞转染。Stathmin-siRNA和negative RNAi的干扰序列分别为5'-CUCCAGGGAAAGAUCCUUCUU-3'和5'-CUCAAGCGACGAUAGCUUCUU-3'。应用siRNA靶向沉默Stathmin作为Stathmin-siRNA组,以未转染细胞为空白对照组,以转染阴性干扰为阴性对照组。
1.2.4 MTT法检测细胞增殖变化 将C13K细胞以5×103/孔接种于96孔板中,细胞贴壁后可进行瞬时转染,每组细胞均设复孔4个,转染24 h、48 h和72 h后在各组细胞中加入MTT溶液(终浓度1 mg/mL),细胞培养箱中避光培养4 h,小心丢弃上层培养液,加入二甲基亚砜(DMSO)150 μL于水平摇床轻摇20 min使其充分溶解,酶标仪检测波长490 nm处的吸光度值(A)并绘制相应增殖曲线。
1.2.5 MTT法检测Stathmin siRNA干扰对顺铂敏感性的影响 将C13K细胞以5×103/孔接种于96孔板中,使用不含血清的1640培养液饥饿6 h,转染24 h后加入不同浓度的顺铂(终浓度分别为0 μg/mL、7.5 μg/mL、15 μg/mL、22.5 μg/mL和30 μg/mL)继续培养24 h,每孔加入MTT溶液(终浓度为1 mg/mL)培养4 h,小心丢弃上层培养液,加入DMSO 150 μL,轻摇20 min至结晶完全溶解,酶标仪检测波长490 nm处吸光值,计算半数抑制量数值(IC50)。
1.2.6 流式细胞仪检测细胞周期的变化 将细胞以1×105/孔接种于6孔板中,当细胞达到30%~50%融合度时,按Invitrogen公司操作说明书进行瞬转;转染后48 h细胞融合度能达到70%~80%,加顺铂(终浓度15 μg/mL)继续培养24 h;收集各处理组细胞,加入70%浓度的冰乙醇固定过夜(-20℃),1200 rpm/min离心5 min,离心半径为10 cm,使用PBS重悬洗涤细胞离心,再加入10 μg/mL PI溶液(含0.1%RNase A)500 μL,室温下避光染色1 h,半小时内流式细胞仪上机测定细胞周期。
1.3 统计学分析
所有数据重复3次,所有数据使用均数±标准差(x±s)表示,使用SPSS 16.0软件进行统计学处理分析,两组间数据比较采用Students t-test,多组间数据比较可采用单因素方差分析和LSD检验,P<0.05认为差异具有统计学意义。
2 结果
2.1 Stathmin在OV2008和C13K细胞中的表达
采用蛋白质印记法研究发现Stathmin在卵巢癌顺铂耐药细胞株C13K中表达(0.82±0.02)明显高于卵巢癌顺铂敏感细胞株OV2008(0.18±0.02),差异有显著统计学意义(t=34.80,P<0.01)。见图1。
2.2 Stathmin siRNA干扰对C13K细胞Stathmin蛋白的影响
与空白对照组(1.69±0.04)和阴性对照组(1.62±0.03)相比,转染Stathmin siRNA至48 h后,C13K细胞中的Stathmin 蛋白表达量均明显下降(0.37±0.02),三者差异有统计学意义(F=1023,P<0.0l)。而空白对照和阴性对照组比较,两者无统计学差异(P>0.05)。见图2。
2.3 siRNA转染对C13K细胞增殖的影响
用MTT法检测空白对照组、阴性对照组、Stathmin-siRNA组细胞增殖变化。结果显示转染siRNA 0 h、24 h、48 h后对细胞的增殖无明显影响;而在转染72 h后,Stathmin-siRNA组细胞的增殖能力(OD=0.55±0.05)明显低于空白对照组(OD=1.35±0.06)及阴性对照组细胞(OD=1.26±0.08),差异具有统计学意义(F=142.6,P<0.01),而空白对照和阴性对照组比较,无统计学差异(P>0.05)(图3)。
图3 转染siRNA对C13K细胞增殖能力的影响
vs空白对照组和阴性对照组,bP<0.01
2.4 siRNA转染对C13K细胞顺铂敏感性的影响
顺铂作用24 h时对空白对照组的半数致死剂量IC50为(27.22±2.12)μg/mL,阴性对照组的IC50为(25.05±1.29)μg/mL,而Stathmin-siRNA组IC50为(15.41±1.08)μg/mL,三者比较,F=31.04,P<0.01,即Stathmin-siRNA干扰后能显著提高C13K细胞对顺铂的敏感性,而与空白对照组相比,阴性对照组的顺铂敏感性无明显变化,差异无统计学意义(P>0.05)。见图4。
图4 MTT法检测转染前后细胞对顺铂敏感性的影响
vs空白对照组和阴性对照组,aP<0.05、bP<0.01
2.5 Stathmin-siRNA对顺铂致C13K细胞周期性的影响
细胞转染48 h再经顺铂(15 μg/mL)作用24 h后,与顺铂作用的空白对照组[(4.33±0.34)%]和阴性对照组[(3.31±0.35)%]相比,Stathmin-siRNA组G2/M期细胞明显增多[(27.48±0.76)%],差异具有统计学意义(F=1362,P<0.01)。同时对G0/G1期的影响无统计学意义(P>0.05),见表1。
表1 转染siRNA对C13K细胞周期的影响(x±s,%)
3 讨论
化疗耐药是一个多因素、多环节相互作用、相互影响的复杂过程。既往研究发现卵巢癌耐药的发生发展受多个基因的重要调控,例如野生型P53的突变[9],BRAC1二次突变[10],凋亡蛋白抑制分子XIAP[11]等在铂类耐药的发生发展中都发挥了重要作用。Kigawa等研究发现野生型P53缺失能增强肿瘤对顺铂的耐受,相反,wtP53基因的重建增强了化疗敏感性[12]。P53的突变使肿瘤细胞丧失了G1/S检测点的调控,DNA损伤修复明显减少,最终增强了顺铂化疗敏感性[13]。因此寻找新的基因治疗靶点并进行靶向干预,能有效逆转化疗药物的耐受,为卵巢癌的诊治和延长患者生命提供有益的帮助。
Stathmin,是细胞内与细胞周期调控相关的一种重要微管调节蛋白,主要通过磷酸化和去磷酸化过程的相互切换调节微管系统动力平衡来参与多种肿瘤的发生发展、侵袭转移及获得性多药耐药等生物学过程,然而它的具体作用机制还未研究清楚。Wang F等[4]发现Stathmin在食管癌中高表达,与肿瘤分化程度,肿瘤浸润深度,淋巴结转移和TNM分期密切相关。Xu JP等[14]通过二维电泳技术发现Stathmin在阿霉素化疗耐受的白血病细胞中表达量更高,提出Stathmin 可能与白血病的耐药密切相关[14]。Werner HM等[15]研究发现Stathmin干扰后能明显增强子宫内膜癌对紫杉酚的敏感性,同时Stathmin的高表达的患者接受紫杉酚化疗后其生存率更低[15]。本研究发现Stathmin在顺铂耐药型卵巢癌细胞中的表达高于化疗敏感细胞株,这与Balachandran R等[16]的研究结果相一致[16],提示Stathmin可能参与了这两种细胞不同的表型差异,在卵巢癌的顺铂耐药中可能起重要作用。
RNA干扰(RNAi)是利用同源性的双链RNA诱导特异性序列的基因靶向沉默,能快速有效抑制基因的表达及其活性。siRNA是一种具有21~23个碱基的双链RNA小分子干扰片段,能特异性识别靶基因的序列,已广泛用于基础实验研究和部分临床药物的研发过程[17-19]。我们利用RNA干扰下调卵巢癌C13K细胞中Stathmin的表达,进而进行相关体外实验研究。本研究观察到沉默卵巢癌细胞Stathmin的表达后,细胞的体外增殖能力明显抑制,表明Stathmin参与了调节卵巢癌细胞的增殖及分化,促进肿瘤细胞的生长过程。Stathmin的以上作用可能受PCNA、P53、FOXM1等增殖相关通路的重要调控作用。我们发现抑制Stathmin的表达能明显降低C13K细胞化疗药物顺铂的IC50值,增强其化疗的敏感性,提示Stathmin的干扰片段同化疗可联合应用,提高卵巢癌的治疗效果。同时,我们也发现较低剂量的顺铂能使卵巢癌细胞阻滞在S期,这样的效果一方面可以使DNA的合成明显受阻,另一方面使癌细胞有充足的时间启动DNA损伤修复机制,更容易诱导获得性耐药的产生。Shin SY等[20]研究发现跨越S期增加G2/M期阻滞能有效增加肿瘤细胞对顺铂的敏感性。本研究证实Stathmin的siRNA转染能明显降低顺铂导致的S期阻滞,增加G2/M期细胞比例。由此推测,Stathmin可能通过周期调节分子相互作用,影响细胞周期检测点功能或DNA损伤修复机制,从而影响铂类耐药。当然其具体作用机制还需要进一步研究。因此,Stathmin不仅影响直接作用于微管的化疗药物如紫杉醇等的耐药性,而且对卵巢癌的顺铂耐药也有一定影响。当然,肿瘤的发生发展受多个基因联合调控,单独研究某一基因或分子对于彻底治愈肿瘤远远不够,全面研究并绘制宏观的基因调控网络图至关重要。
综上所述,干扰Stathmin的表达可显著抑制卵巢癌细胞的增殖,同时通过促使细胞周期阻滞在G2/M期来增强C13K细胞对顺铂的药物敏感性,提示Stathmin基因可能是治疗卵巢癌的有效靶点。
[参考文献]
[1] 焦今文,赵新卫,邓博雅,等. p38MAPK对卵巢癌顺铂耐药作用及机制的探讨[J]. 中华肿瘤防治杂志,2012, 19(16):1221-1226.
[2] 刘俊,蔡云朗,任慕兰,等. PI-103对人卵巢癌细胞株 SKOV3/DDP顺铂化疗效果的影响[J]. 东南大学学报(医学版),2013,32(5):574-579.
[3] Lu Y,Liu C,Cheng H,et al. Stathmin,interacting with Nf-κB,promotes tumor growth and predicts poor prognosis of pancreatic cancer[J]. Curr Mol Med,2014,14(3):328-339.
[4] Wang F,Xuan XY,Yang X,et al. Stathmin is a marker of progression and poor prognosis in esophageal carcinoma[J].Asian Pac J Cancer Prev,2014,15(8):3613-3618.
[5] Akhtar J,Wang Z,Yu C,et al. Effectiveness of local injection of lentivirus-delivered stathmin shRNA in human gastric cancer xenograft mouse[J]. J Gastroenterol Hepatol,2014,29(9):1685-1691.
[6] Wu Y,Tang M,Wu Y,et al. A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells[J].Cell Oncol(Dordr),2014,37(1):53-67.
[7] Miceli C,Tejada A,Castaneda A,et al. Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer[J]. Cancer Gene Ther,2013,20(5):298-307.
[8] 石英,翁艳洁,周文娟,等. Stathmin在上皮性卵巢癌组织中的表达及意义[J]. 中国癌症杂志,2011,21(8):581-584.
[9] Farrand L,Byun S,Kim JY,et al. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53,X-linked inhibitor of apoptosis protein(XIAP),and mitochondrial fission[J]. J Biol Chem,2013,288(33):23740-23750.
[10] Turner JG,Dawson J,Sullivan DM. Nuclear export of proteins and drug resistance in cancer[J]. Biochem Pharmacol,2012,83(8):1021-1032.
[11] Mir R,Tortosa A,Martinez-Soler F,et al. Mdm2 antagonists induce apoptosis and synergize with cisplatin overcoming chemoresistance in TP53 wild-type ovarian cancer cells[J]. Int J Cancer,2013,132(7):1525-1536.
[12] Kigawa J,Sato S,Shimada M,et al. Effect of p53 gene transfer and cisplatin in a peritonitis carcinomatosa model with p53-deficient ovarian cancer cells[J]. Gynecol Oncol,2002,84(2): 210-215.
[13] Roy M,Mukherjee S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev,2014,15(3):1403-1410.
[14] Xu JP,Hu JD,Lin MH,et al. Up-regulation of Stathmin and CrkL protein expressions in adriamycin-resistant leukemia cell line K562/A02[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2011,19(6):1383-1387.
[15] Werner HM,Trovik J,Halle MK,et al. Stathmin protein level,a potential predictive marker for taxane treatment response in endometrial cancer[J]. PLoS One,2014,9(2):e90141.
[16] Balachandran R,Welsh MJ,Day BW. Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells[J]. Oncogene,2003,22(55):8924-8930.
[17] Lares MR,Rossi JJ,Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications [J]. Trends Biotechnol,2010,28(11):570-579.
[18] 来雷,杨林军,翟昌林. RNAi干扰HMGB1基因对乳腺癌细胞MCF-7增殖的影响[J]. 中国现代医生,2012,50(24):23-25.
[19] 廖琪. CHK1 shRNA-617与卵巢癌Skov3细胞放疗敏感性的研究[J]. 中国性科学,2013,22(5):32-34.
[20] Shin SY,Jung H,Ahn S,et al. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells[J]. Bioorg Med Chem,2014,22(6):1809-1820.
(收稿日期:2014-07-24)
综上所述,干扰Stathmin的表达可显著抑制卵巢癌细胞的增殖,同时通过促使细胞周期阻滞在G2/M期来增强C13K细胞对顺铂的药物敏感性,提示Stathmin基因可能是治疗卵巢癌的有效靶点。
[参考文献]
[1] 焦今文,赵新卫,邓博雅,等. p38MAPK对卵巢癌顺铂耐药作用及机制的探讨[J]. 中华肿瘤防治杂志,2012, 19(16):1221-1226.
[2] 刘俊,蔡云朗,任慕兰,等. PI-103对人卵巢癌细胞株 SKOV3/DDP顺铂化疗效果的影响[J]. 东南大学学报(医学版),2013,32(5):574-579.
[3] Lu Y,Liu C,Cheng H,et al. Stathmin,interacting with Nf-κB,promotes tumor growth and predicts poor prognosis of pancreatic cancer[J]. Curr Mol Med,2014,14(3):328-339.
[4] Wang F,Xuan XY,Yang X,et al. Stathmin is a marker of progression and poor prognosis in esophageal carcinoma[J].Asian Pac J Cancer Prev,2014,15(8):3613-3618.
[5] Akhtar J,Wang Z,Yu C,et al. Effectiveness of local injection of lentivirus-delivered stathmin shRNA in human gastric cancer xenograft mouse[J]. J Gastroenterol Hepatol,2014,29(9):1685-1691.
[6] Wu Y,Tang M,Wu Y,et al. A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells[J].Cell Oncol(Dordr),2014,37(1):53-67.
[7] Miceli C,Tejada A,Castaneda A,et al. Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer[J]. Cancer Gene Ther,2013,20(5):298-307.
[8] 石英,翁艳洁,周文娟,等. Stathmin在上皮性卵巢癌组织中的表达及意义[J]. 中国癌症杂志,2011,21(8):581-584.
[9] Farrand L,Byun S,Kim JY,et al. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53,X-linked inhibitor of apoptosis protein(XIAP),and mitochondrial fission[J]. J Biol Chem,2013,288(33):23740-23750.
[10] Turner JG,Dawson J,Sullivan DM. Nuclear export of proteins and drug resistance in cancer[J]. Biochem Pharmacol,2012,83(8):1021-1032.
[11] Mir R,Tortosa A,Martinez-Soler F,et al. Mdm2 antagonists induce apoptosis and synergize with cisplatin overcoming chemoresistance in TP53 wild-type ovarian cancer cells[J]. Int J Cancer,2013,132(7):1525-1536.
[12] Kigawa J,Sato S,Shimada M,et al. Effect of p53 gene transfer and cisplatin in a peritonitis carcinomatosa model with p53-deficient ovarian cancer cells[J]. Gynecol Oncol,2002,84(2): 210-215.
[13] Roy M,Mukherjee S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev,2014,15(3):1403-1410.
[14] Xu JP,Hu JD,Lin MH,et al. Up-regulation of Stathmin and CrkL protein expressions in adriamycin-resistant leukemia cell line K562/A02[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2011,19(6):1383-1387.
[15] Werner HM,Trovik J,Halle MK,et al. Stathmin protein level,a potential predictive marker for taxane treatment response in endometrial cancer[J]. PLoS One,2014,9(2):e90141.
[16] Balachandran R,Welsh MJ,Day BW. Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells[J]. Oncogene,2003,22(55):8924-8930.
[17] Lares MR,Rossi JJ,Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications [J]. Trends Biotechnol,2010,28(11):570-579.
[18] 来雷,杨林军,翟昌林. RNAi干扰HMGB1基因对乳腺癌细胞MCF-7增殖的影响[J]. 中国现代医生,2012,50(24):23-25.
[19] 廖琪. CHK1 shRNA-617与卵巢癌Skov3细胞放疗敏感性的研究[J]. 中国性科学,2013,22(5):32-34.
[20] Shin SY,Jung H,Ahn S,et al. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells[J]. Bioorg Med Chem,2014,22(6):1809-1820.
(收稿日期:2014-07-24)
综上所述,干扰Stathmin的表达可显著抑制卵巢癌细胞的增殖,同时通过促使细胞周期阻滞在G2/M期来增强C13K细胞对顺铂的药物敏感性,提示Stathmin基因可能是治疗卵巢癌的有效靶点。
[参考文献]
[1] 焦今文,赵新卫,邓博雅,等. p38MAPK对卵巢癌顺铂耐药作用及机制的探讨[J]. 中华肿瘤防治杂志,2012, 19(16):1221-1226.
[2] 刘俊,蔡云朗,任慕兰,等. PI-103对人卵巢癌细胞株 SKOV3/DDP顺铂化疗效果的影响[J]. 东南大学学报(医学版),2013,32(5):574-579.
[3] Lu Y,Liu C,Cheng H,et al. Stathmin,interacting with Nf-κB,promotes tumor growth and predicts poor prognosis of pancreatic cancer[J]. Curr Mol Med,2014,14(3):328-339.
[4] Wang F,Xuan XY,Yang X,et al. Stathmin is a marker of progression and poor prognosis in esophageal carcinoma[J].Asian Pac J Cancer Prev,2014,15(8):3613-3618.
[5] Akhtar J,Wang Z,Yu C,et al. Effectiveness of local injection of lentivirus-delivered stathmin shRNA in human gastric cancer xenograft mouse[J]. J Gastroenterol Hepatol,2014,29(9):1685-1691.
[6] Wu Y,Tang M,Wu Y,et al. A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells[J].Cell Oncol(Dordr),2014,37(1):53-67.
[7] Miceli C,Tejada A,Castaneda A,et al. Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer[J]. Cancer Gene Ther,2013,20(5):298-307.
[8] 石英,翁艳洁,周文娟,等. Stathmin在上皮性卵巢癌组织中的表达及意义[J]. 中国癌症杂志,2011,21(8):581-584.
[9] Farrand L,Byun S,Kim JY,et al. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53,X-linked inhibitor of apoptosis protein(XIAP),and mitochondrial fission[J]. J Biol Chem,2013,288(33):23740-23750.
[10] Turner JG,Dawson J,Sullivan DM. Nuclear export of proteins and drug resistance in cancer[J]. Biochem Pharmacol,2012,83(8):1021-1032.
[11] Mir R,Tortosa A,Martinez-Soler F,et al. Mdm2 antagonists induce apoptosis and synergize with cisplatin overcoming chemoresistance in TP53 wild-type ovarian cancer cells[J]. Int J Cancer,2013,132(7):1525-1536.
[12] Kigawa J,Sato S,Shimada M,et al. Effect of p53 gene transfer and cisplatin in a peritonitis carcinomatosa model with p53-deficient ovarian cancer cells[J]. Gynecol Oncol,2002,84(2): 210-215.
[13] Roy M,Mukherjee S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev,2014,15(3):1403-1410.
[14] Xu JP,Hu JD,Lin MH,et al. Up-regulation of Stathmin and CrkL protein expressions in adriamycin-resistant leukemia cell line K562/A02[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2011,19(6):1383-1387.
[15] Werner HM,Trovik J,Halle MK,et al. Stathmin protein level,a potential predictive marker for taxane treatment response in endometrial cancer[J]. PLoS One,2014,9(2):e90141.
[16] Balachandran R,Welsh MJ,Day BW. Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells[J]. Oncogene,2003,22(55):8924-8930.
[17] Lares MR,Rossi JJ,Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications [J]. Trends Biotechnol,2010,28(11):570-579.
[18] 来雷,杨林军,翟昌林. RNAi干扰HMGB1基因对乳腺癌细胞MCF-7增殖的影响[J]. 中国现代医生,2012,50(24):23-25.
[19] 廖琪. CHK1 shRNA-617与卵巢癌Skov3细胞放疗敏感性的研究[J]. 中国性科学,2013,22(5):32-34.
[20] Shin SY,Jung H,Ahn S,et al. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells[J]. Bioorg Med Chem,2014,22(6):1809-1820.
(收稿日期:2014-07-24)