硫化氢通过调控沉默信息调节子1抑制高糖诱导的人脐静脉内皮细胞氧化应激损伤
2014-11-17
田 飒 彭学军 何宇明 吴 蓉
中南大学铁道学院职工医院内科,湖南长沙 410075
[摘要] 目的 观察外源性硫化氢(H2S)对高糖诱导人脐静脉内皮细胞(HUVECs)氧化应激损伤的保护作用及其可能机制。 方法 用25 mmol/L D-葡萄糖(高糖)、外源性H2S供体硫化氢钠(NaHS)(5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L)及沉默信息调节子1(SIRT1)特异性抑制剂尼克酰胺(40 mmol/L)处理HUVECs细胞株24 h。实验分为对照组、高糖组、甘露醇组、NaHS(5×10-5、1×10-4、5×10-4、1×10-3、5×10-3 mol/L)组、高糖+NaHS(5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L)组和高糖+NaHS(10-3 mol/L)+尼克酰胺组。采用MTT比色法检测细胞活力,流式细胞术检测细胞内的内活性氧(ROS)水平,Western bolt法检测SIRT1的表达。 结果 与对照组比较,高糖组细胞活力显著降低[OD值分别为(0.76±0.09)和(0.18±0.01),t = 5.34, P < 0.05],细胞内ROS水平显著增加[ROS水平分别为(356.18±42.96)au和(1183.63±84.31)au,t = 6.72,P < 0.05]。与高糖组比较,高糖+NaHS(5×10-4、1×10-3和5×10-3 mol/L)组细胞活力显著增加[OD值分别为(0.18±0.01)、(0.39±0.05)、(0.68±0.04)和(0.51±0.08),t1 = 3.16,t2 = 3.95,t3 = 3.86,均P < 0.05],细胞内ROS水平显著降低[ROS水平分别为(1183.63±84.31)、(874.32±85.36)、(628.65±54.27)和(439.56±53.64)au,t1 = 3.46,t2 = 3.97,t3 = 5.13,均P < 0.05]。与对照组比较,高糖组细胞中SIRT1蛋白表达显著下调[蛋白相对表达量分别为(0.48±0.04)和(0.17±0.03),t = 3.94,P < 0.05]。与高糖组比较,高糖+NaHS(10-3 mol/L)组细胞中SIRT1表达显著上调[蛋白相对表达量分别为(0.17±0.03)和(0.59±0.08),t = 4.36,P < 0.05]。SIRT1抑制剂尼克酰胺取消了NaHS抑制高糖诱导的HUVECs细胞活力的降低[高糖+NaHS组和高糖+NaHS+尼克酰胺组OD值分别为(0.52±0.04)和(0.23±0.03),t = 2.98,P < 0.05]和细胞内ROS水平的增加[高糖+NaHS组和高糖+NaHS+尼克酰胺组ROS水平分别为(628.65±54.27)au和(1052.84±113.42)au,t = 3.76,P < 0.05]。 结论 外源性H2S抑制了高糖诱导的HUVECs氧化应激损伤,其机制可能与H2S上调SIRT1的表达有关。
[关键词] 硫化氢;高糖;氧化应激;沉默信息调节子1
[中图分类号] R3 [文献标识码] A [文章编号] 1673-7210(2014)10(b)-0019-06
Hydrogen sulfide inhibits high glucose-induced oxidative stress injury by modulating silent information regulator 1 in human umbilical vein endothelial cells
TIAN Sa PENG Xuejun HE Yuming WU Rong
Department of Internal Medicine, the Staff-worker Hospital of Railroad Institute of Central South University, Hu'nan Province, Changsha 410075, China
[Abstract] Objective To investigate the protective effect of extrogenous hydrogen sulfide (H2S) on the injury of oxidative stress induced by high glucose and explore the possible mechanism in human umbilical vein endothelial cells (HUVECs). Methods HUVECs were incubated by 25 mmol/L D-glucose (high glucose) to induce injury and cells were treated with H2S donor sodium bisulfide (NaHS) (5×10-5, 1×10-4, 5×10-4, 1×10-3 and 5×10-3 mol/L) for 24 h. The inhibitor of silent information regulator 1 (SIRT1) niacinamide was used in the study. The cells were divided into the control group, high glucose group, mannitol group, NaHS(5×10-5, 1×10-4, 5×10-4, 1×10-3, 5×10-3 mol/L)groups, high glucose + NaHS (5×10-5, 1×10-4, 5×10-4, 1×10-3 and 5×10-3 mol/L) groups and high glucose + NaHS (10-3 mol/L) + niacinamide group. MTT assay was used to detect the cell viability. The level of reactive oxygen species (ROS) was measured by flow cytometry. The expression of SIRT1 was tested by Western blot. Results Compared with the control group, the cell viability was significantly decreased [OD were (0.76±0.09) and (0.18±0.01) respectively, t = 5.34, P < 0.05], and the level of ROS was significantly increased [the levels of ROS were (356.18±42.96) au and (1183.63±84.31) au respectively, t = 6.72, P < 0.05] in high glucose group. Compared with high glucose group, the cells viability were significantly increased [OD were (0.18±0.01), (0.39±0.05), (0.68±0.04) and (0.51±0.08) respectively, t1 = 3.16, t2 = 3.95, t3 = 3.86, P < 0.05], and the levels of ROS were significantly decreased [the levels of ROS were (1183.63±84.31), (874.32±85.36), (628.65±54.27) and (439.56±53.64) au respectively, t1 = 3.46, t2 = 3.97, t3 = 5.13, all P < 0.05] in high glucose+NaHS (5×10-4, 10-3 and 5×10-3 mol/L) groups. Compared with the control, the expression of SIRT1 was significantly down-regulated in high glucose group [relative expression levels were (0.48±0.04) and (0.17±0.03) respectively, t = 3.94, P < 0.05]. Compared with high glucose group, the expression of SIRT1 was significantly up-regulated in high glucose+NaHS (10-3 mol/L) group [relative expression levels were (0.17±0.03) and (0.59±0.08) respectively, t = 4.36, P < 0.05]. Compared with the high glucose+NaHS (10-3 mol/L) group, the cell viability was significantly decreased [OD were (0.52±0.04) and (0.23±0.03) respectively, t = 2.98, P < 0.05) and the level of ROS was significantly increased [the level of ROS was (628.65±54.27) au and (1052.84±113.42) au, t = 3.76, P < 0.05) in high glucose+NaHS (10-3 mol/L) + niacinamide group. Conclusion Extrogenous H2S prevents the injury of oxidative stress induced by high glucose in HUVECs, the mechanisms may be related to the up-regulation of SIRT1 induced by H2S.endprint
[Key words] Hydrogen sulfide; High glucose; Oxidative stress; Silent information regulator 1
糖尿病是常见的代谢障碍性疾病,糖尿病血管病变是糖尿病患者致残致死的主要原因之一,血管内皮损伤和功能紊乱是糖尿病血管病变的始动环节和主要的病理生理学基础[1]。高血糖是糖尿病血管内皮功能损伤的主要原因,高血糖可直接损伤血管内皮细胞,还可诱导氧化应激损伤血管内皮细胞[2]。硫化氢(hydrogen sulfide,H2S)是继一氧化氮和一氧化碳之后的第三类气体信号分子。H2S在心血管系统、神经系统、泌尿系统和消化系统中均有分布,参与了许多重要的生理和病理生理过程[3]。研究报道H2S对血管内皮细胞具有保护作用,H2S也具有较强的抗氧化活性[4]。沉默信息调节子1(silent information regulation homolog 1,SIRT1)是在真核生物细胞中普遍表达的去乙酰化蛋白,也是一种被称为“能量感受器”的核转录因子[5]。SIRT1可感受机体能量状态,如高糖、高脂的改变,调节其他转录因子的表达,也参与了调节内皮细胞代谢稳态和氧化应激损伤的过程[6]。因此本研究拟采用人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)作为研究对象,用硫氢化钠(sodium hydrosulfide,NaHS)作为外源性H2S的供体,观察外源性H2S对高糖诱导HUVECs氧化应激损伤的保护作用,并从SIRT1的角度探讨其可能的机制。
1 材料与方法
1.1 材料
DMEM培养基(Invitrogen公司,批号:14800017),胎牛血清(杭州四季青公司,批号:1401113),NaHS(批号:06315DJ)、胰蛋白酶(批号:H20100116)、D-葡萄糖(批号:026K1516)、二甲基亚砜(dimethyl sulfoxide,DMSO,批号:67-68-5)、四甲基偶氮唑蓝(methyl thiazolyl tetrazolium,MTT,批号:61k5318)、双氢-乙酰乙酸二氯荧光黄(2′-7′-dichlorofluorescin diacetate, DCFH-DA,批号:4091-99-0)和尼克酰胺(批号:3TP05)均为Sigma公司产品。BCA蛋白定量试剂(Pierce公司,批号:23225),鼠抗人SIRT1抗体以及辣根过氧化物酶标记二抗(Santa Cruz公司,批号:sc-47778)。流式细胞测定仪(Beckman公司)和Elx800型酶标仪(Bio-TEK公司)。
1.2 实验方法
1.2.1 人脐静脉内皮细胞的培养 HUVECs细胞株接种于含10%胎牛血清(fetal bovine serum,FBS)和2 mmol/L的L-谷氨酰胺的DMEM培养基培养,置于37℃、5%CO2的培养箱中静止培养,2~3 d换液。待细胞生长融合至90%后弃去培养液,加入适量0.25%胰蛋白酶消化数分钟,吹打分散细胞,加入含10%FBS的DMEM培养液制成细胞悬液,调整细胞密度为1×106个/mL,接种于12孔板,每孔1 mL细胞悬液。
1.2.2 实验分组 取对数生长期的HUVECs细胞进行实验,分为对照组:含10%FBS的DMEM培养基培养,培养基中含5.5 mmol/L葡萄糖;高糖组:含25 mmol/L D-葡萄糖培养基培养细胞24 h;甘露醇组:含25 mmol/L甘露醇培养液培养细胞24 h;NaHS组:含5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L NaHS培养液培养细胞24 h;高糖+NaHS组:用含5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L NaHS和25 mmol/L D-葡萄糖的培养液共同孵育细胞24 h;尼克酰胺组:用含40 mmol/L SIRT1特异性抑制剂尼克酰胺的培养液培养细胞24 h;NaHS+高糖+尼克酰胺组:用含1×10-3 mol/L NaHS、25 mmol/L D-葡萄糖和40 mmol/L尼克酰胺的培养液共同孵育细胞24 h。
1.2.3 MTT比色法检测细胞增殖 细胞胰酶消化后制成悬液,细胞密度为1×104个/mL,接种96孔培养板,每个培养孔100 μL细胞悬液,每组实验设3个重复孔,置于37℃、5%CO2培养箱中孵育30 min。在实验结束前3 h每孔加入100 μL MTT,使MTT的终浓度为0.5 mg/mL,空白对照组不加MTT,继续在培养箱中孵育3 h。吸去全部弃培养液,每孔加入100 μL DMSO,振荡10 min,DMSO结晶完全溶解后,在Elx800型酶标仪上测定波长为570 nm的吸光度值(OD值)。
1.2.4 流式细胞仪检测细胞内活性氧(reactive oxygen species,ROS) 采用DCFH-DA作为ROS的捕获剂,用10 μmol/L DCFH-DA孵育各组细胞30 min,空白对照组不加DCFH-DA。用磷酸盐缓冲液(phosphate buffer,PBS)漂洗2次,0.25%胰蛋白酶消化后收集细胞,PBS漂洗1次,上机检测二氯荧光黄的平均荧光强度,以氩离子激光488 nm作为激发光,每个样品平均测定10 000个活细胞,以平均荧光强度表示细胞内ROS的水平。
1.2.5 Western blot法检测SIRT1的蛋白表达 采用总蛋白提取试剂盒按说明操作提取细胞总蛋白,BAC法测定蛋白浓度。取100 μg蛋白质样本加入2×SDS凝胶加样缓冲液中煮沸使蛋白质变性。用十二烷基磺酸钠聚丙烯酰胺凝胶电泳1 h分离蛋白,将分离的蛋白电转移至0.22 μm的PVDF膜上,丽春红染色观察转移效果。5%脱脂牛奶室温下封闭2 h,加入鼠抗人SIRT1(1∶500)和β-actin(1∶1000)一抗,4℃孵育过夜。用TBST振摇洗膜3次,加入辣根过氧化物酶标记的二抗(1∶1000),室温下孵育2 h,再用TBST振摇洗膜3次。蛋白质印迹荧光检测试剂盒显示于X线片,显影、定影后用凝胶图像分析系统扫描胶片,用Image lab软件对条带进行半定量分析。endprint
1.3 统计学方法
采用SPSS 19.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,对照组与高糖组的比较采用t检验,高糖组与NaHS各亚组间的比较采用单因素方差分析,组间两两比较采用LSD-t检验。以P < 0.05为差异有统计学意义。
2 结果
2.1 高糖和外源性H2S对HUVECs细胞活力的影响
结果如图1所示:与对照组比较,高糖组HUVECs的细胞活力显著降低[OD值分别为(0.76±0.09)和(0.18±0.01),t = 5.34,P < 0.05];而甘露醇组的细胞活力与对照组比较差异无统计学意义[OD值分别为(0.76±0.09)和(0.75±0.07),t = 0.01,P > 0.05)。与对照组比较,NaHS(5×10-4、1×10-3和5×10-3 mol/L)组的细胞活力显著增加[OD值分别为(0.76±0.09)、(0.95±0.14)、(1.14±0.09)和(1.06±0.12),t1=2.93,t2=3.41,t3=3.22,均P < 0.05],以1×10-3 mol/L的NaHS作用最强。与高糖组比较,高糖+NaHS(5×10-4、1×10-3和5×10-3 mol/L)组细胞活力显著增加[OD值分别为(0.18±0.01)、(0.39±0.05)、(0.68±0.04)和(0.51±0.08),t1=3.16,t2=3.95,t3=3.86,均P < 0.05),以1×10-3 mol/L的NaHS作用最强。
A:高糖、甘露醇和外源性H2S单独处理对人脐静脉内皮细胞活力的影响;B:外源性H2S对高糖诱导的人脐静脉内皮细胞活力降低的影响;与对照组比较,*P < 0.05;与高糖组比较,#P < 0.05;NaHS:硫氢化钠;OD:吸光度
图1 高糖和外源性H2S对人脐静脉内皮细胞活力的影响
2.2 高糖和外源性H2S对HUVECs细胞内ROS水平的影响
以DCF平均荧光强度反映细胞内ROS水平,结果如图2所示:与对照组比较,高糖组HUVECs细胞内ROS水平显著增加[ROS水平分别为(356.18±42.96)au和(1183.63±84.31)au,t = 6.72,P < 0.05),而甘露醇组细胞内ROS水平与对照组比较差异无统计学意义[ROS水平分别为(356.18±42.96)au和(349.75±36.15)au,t = 0.08,P > 0.05]。与对照组比较,NaHS组(5×10-4、1×10-3和5×10-3 mol/L)细胞内ROS水平显著降低[ROS水平分别为(356.18±42.96)、(286.14±24.51)、(218.24±29.64)和(201.35±26.41)au,t1 = 2.25,t2=2.84,t3 = 3.17,均P < 0.05)。与高糖组比较,高糖+NaHS(5×10-4、1×10-3和5×10-3 mol/L)组细胞内ROS水平显著降低[ROS水平分别为(1183.63±84.31)、(874.32±85.36)、(628.65±54.27)和(439.56±53.64)au,t1 = 3.46,t2 = 3.97,t3 = 5.13,均P < 0.05)。
2.3 高糖和外源性H2S对HUVECs细胞内SIRT1表达的影响
结果如图3所示:与对照组比较,高糖组HUVECs细胞中SIRT1表达显著下调[蛋白相对表达量分别为(0.48±0.04)和(0.17±0.03),t = 3.94,P < 0.05),而甘露醇组细胞中SIRT1表达与对照组比较差异无统计学意义[蛋白相对表达量分别为(0.48±0.04)和(0.47±0.06),t = 0.03,P > 0.05]。与对照组比较,1×10-3 mol/L NaHS组细胞中SIRT1表达显著上调[蛋白相对表达量分别为(0.48±0.04)和(0.86±0.09),t = 4.68,P < 0.05]。与高糖组比较,高糖+NaHS(1×10-3 mol/L)组HUVECs细胞中SIRT1表达显著上调[蛋白相对表达量分别为(0.17±0.03)和(0.59±0.08),t = 4.36,P < 0.05]。
2.4 SIRT1抑制剂尼克酰胺对H2S作用的影响
结果如图4所示:SIRT1抑制剂尼克酰胺取消外源性H2S供体NaHS抑制了高糖诱导的HUVECs细胞活力的降低[高糖+NaHS组和高糖+NaHS+尼克酰胺组OD值分别为(0.52±0.04)au和(0.23±0.03)au,t = 2.98,P < 0.05]和高糖诱导的HUVECs细胞内ROS水平的增加[高糖+NaHS组和高糖+NaHS+尼克酰胺组ROS水平分别为(628.65±54.27)au和(1052.84±113.42)au,t = 3.76,均P < 0.05]。
A:尼克酰胺对H2S保护高糖诱导的人脐静脉内皮细胞损伤的影响;B:尼克酰胺对H2S降低高糖诱导的人脐静脉内皮细胞中ROS水平的影响;1:对照组;2:高糖组;3:高糖+硫氢化钠(1×10-3 mol/L)组;4:高糖+硫氢化钠(1×10-3 mol/L)+尼克酰胺(40 mmol/L)组;与对照组比较,*P < 0.05;与高糖组比较,#P < 0.05;与高糖+硫氢化钠(10-3 mol/L)组比较,▲P < 0.05;ROS:活性氧;OD:吸光度
图4 沉默信息调节子1抑制剂尼克酰胺对H2S作用的影响
3 讨论
高糖可以通过多种途径损伤内皮细胞和促进内皮细胞凋亡。研究发现高糖通过激活丝氨酸/苏氨酸蛋白激酶依赖性磷酸酯酶与张力蛋白同源物(phosphatase and tensin homolog,PTEN)抑制Akt磷酸化,从而促进HUVECs的凋亡[7]。高糖可以增加还原型辅酶Ⅱ氧化酶含量,促进PKC磷酸化,从而增加细胞内ROS的生成,ROS增加又可以活化JNK,从而激活Caspase-3,继而导致HUVECs的凋亡[8]。因此本研究中用高糖孵育HUVECs诱导损伤,结果显示25 mmol/L的D-葡萄糖显著降低了HUVECs的细胞活力,而相同浓度的甘露醇没有影响HUVECs的细胞活力,这些表明高糖诱导内皮细胞损伤与渗透压无关。endprint
H2S是继一氧化氮和一氧化碳之后,发现的第三类气体信号分子。研究表明,H2S具有广泛的生物学效应,也参与了多种疾病的发生发展。体内H2S的产生是以L-半胱氨酸为底物,由胱硫醚-γ-裂解酶、胱硫醚β合成酶、半胱氨酸转移酶和3-巯基丙酮酸转硫酶等催化产生[9]。H2S是一种重要的具有细胞保护作用的物质,对多种细胞具有保护作用[10]。NaHS在溶液中可分离出Na+和HS-,随后HS-和H+生成H2S,能维持溶液稳定的HS-和H+,常作为外源性H2S供体使用。
氧化应激是高糖诱导内皮细胞损伤的重要原因。ROS是生物有氧代谢过程中的一种副产品,主要包括氧离子、过氧化物和含氧自由基等,氧化应激时细胞内ROS水平明显增加[11]。为了探讨H2S对高糖诱导HUVECs氧化应激损伤的保护作用,本实验中用5×10-5、1×10-4、5×10-4、1×10-3和5×10-3 mol/L NaHS和25 mmol/L D-葡萄糖的培养液共同孵育细胞24 h。结果表明,高糖处理HUVECs 24 h后细胞活力明显降低;NaHS与高糖共同处理显著增加了HUVECs的细胞活力。这些结果提示NaHS可以拮抗高糖诱导的HUVECs氧化应激损伤。
SIRT1是在哺乳动物体内发现的第一个sirtuins家族成员,具有去乙酰化酶活性,对组蛋白、转录因子、转录共调控因子等在翻译后具有去乙酰化的修饰作用[12]。SIRT1是与能量代谢、机体应激反应、细胞衰老和细胞凋亡等密切相关的转录因子,是机体重要的能量感受器,被称为长寿蛋白[13]。研究发现,SIRT1在保护血管内皮细胞功能、促进内皮细胞的存活中具有重要作用[14]。陈丽琴等[15]研究显示SIRT1途径参与了高糖诱导的炎性反应。Li等[16]的研究发现H2S通过上调SIRT1的表达抑制了甲醛诱导的内质网应激,这表明H2S能调节SIRT1的表达。本实验的结果显示,高糖组HUVECs细胞中SIRT1表达与对照组比较显著下调,而NaHS逆转了高糖诱导的HUVECs细胞中SIRT1表达的下调。SIRT1抑制剂尼克酰胺取消外源性H2S供体NaHS抑制高糖诱导的HUVECs细胞活力的降低和高糖诱导的HUVECs细胞内ROS水平的增加。这些表明外源性H2S抑制了高糖诱导的HUVECs氧化应激损伤,可能与H2S调节SIRT1的表达有关。
总之,本研究表明外源性H2S抑制了高糖诱导的人脐静脉内皮细胞氧化应激损伤,其机制可能与H2S上调SIRT1的表达有关。本研究为糖尿病血管病变的防治提供了一种新的治疗策略和方法。
[参考文献]
[1] Fandi?觡o-Vaquero R,Fernández-Trasancos A,Alvarez E,et al. Orosomucoid secretion levels by epicardial adipose tissue as possible indicator of endothelial dysfunction in diabetes mellitus or inflammation in coronary artery disease [J]. Atherosclerosis,2014,235(2):281-288.
[2] Gao W,Ferguson G,Connell P,et al. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1α expression [J]. Diab Vasc Dis Res,2014, 11(4):270-280.
[3] 张媛,韩辉,高聆,等.硫化氢抑制高糖诱导的内皮细胞损伤的研究[J].山东大学学报:医学版,2012,50(5):1-4.
[4] 宋成洁,齐洪娜,刘磊,等.硫化氢对高糖诱导的人脐静脉内皮细胞凋亡的影响及其机制研究[J].徐州跃学院学报,2011,31(8):515-518.
[5] Wang Y,Liang Y,Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model [J]. FEBS Lett,2011,585(7):986-994.
[6] 周曦,易龙,金鑫,等.SIRT1/UCP2 通路在白藜芦醇抑制血管内皮细胞氧化应激损伤中的作用[J].第三军医大学学报,2013,35(16):1671-1675.
[7] Li J,Yang L,Qin W,et al. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus [J]. PLoS One,2013,8(6):e65549.
[8] Kanikarla-Marie P,Jain SK. L-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS [J]. Mol Cell Biochem,2014,391(1-2):251-256.
[9] Wang K,Ahmad S,Cai M,et al. Response to Letter Regarding Article, "Dysregulation of Hydrogen Sulfide(H2S)Producing Enzyme Cystathionine γ-lyase(CSE)Contributes to Maternal Hypertension and Placental Abnormalities in Preeclampsia" [J]. Circulation,2014,129(22):517-518.endprint
[10] Matsunami M,Kirishi S,Okui T,et al. Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats [J]. J Physiol Pharmacol,2012,63(1):61-68.
[11] Khazim K,Gorin Y,Cavaglieri RC,et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo [J]. Am J Physiol Renal Physiol,2013,305(5):691-700.
[12] Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases [J]. Recent Pat Cardiovasc Drug Discov,2008,3(3):156-164.
[13] Ou X,Lee MR,Huang X,et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress [J]. Stem Cells,2014,32(5):1183-1194.
[14] Marampon F,Gravina GL,Scarsella L,et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis [J]. J Hypertens,2013,31(10):1972-1983.
[15] 陈丽琴,李梦辰,孙承军,等.SIRT1对高糖高脂培养胰岛微血管内皮细胞炎性反应激活的影响[J].国际内分泌代谢杂志,2013,33(4):217-225.
[16] Li X,Zhang KY,Zhang P,et al. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1 [J]. PLoS One,2014, 9(2):e89856.
(收稿日期:2014-07-08 本文编辑:程 铭)endprint
[10] Matsunami M,Kirishi S,Okui T,et al. Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats [J]. J Physiol Pharmacol,2012,63(1):61-68.
[11] Khazim K,Gorin Y,Cavaglieri RC,et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo [J]. Am J Physiol Renal Physiol,2013,305(5):691-700.
[12] Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases [J]. Recent Pat Cardiovasc Drug Discov,2008,3(3):156-164.
[13] Ou X,Lee MR,Huang X,et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress [J]. Stem Cells,2014,32(5):1183-1194.
[14] Marampon F,Gravina GL,Scarsella L,et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis [J]. J Hypertens,2013,31(10):1972-1983.
[15] 陈丽琴,李梦辰,孙承军,等.SIRT1对高糖高脂培养胰岛微血管内皮细胞炎性反应激活的影响[J].国际内分泌代谢杂志,2013,33(4):217-225.
[16] Li X,Zhang KY,Zhang P,et al. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1 [J]. PLoS One,2014, 9(2):e89856.
(收稿日期:2014-07-08 本文编辑:程 铭)endprint
[10] Matsunami M,Kirishi S,Okui T,et al. Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats [J]. J Physiol Pharmacol,2012,63(1):61-68.
[11] Khazim K,Gorin Y,Cavaglieri RC,et al. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo [J]. Am J Physiol Renal Physiol,2013,305(5):691-700.
[12] Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases [J]. Recent Pat Cardiovasc Drug Discov,2008,3(3):156-164.
[13] Ou X,Lee MR,Huang X,et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress [J]. Stem Cells,2014,32(5):1183-1194.
[14] Marampon F,Gravina GL,Scarsella L,et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis [J]. J Hypertens,2013,31(10):1972-1983.
[15] 陈丽琴,李梦辰,孙承军,等.SIRT1对高糖高脂培养胰岛微血管内皮细胞炎性反应激活的影响[J].国际内分泌代谢杂志,2013,33(4):217-225.
[16] Li X,Zhang KY,Zhang P,et al. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1 [J]. PLoS One,2014, 9(2):e89856.
(收稿日期:2014-07-08 本文编辑:程 铭)endprint