APP下载

玉米ZmCIPK基因的克隆及表达特性

2014-10-28袁德梽周浓

湖北农业科学 2014年15期
关键词:逆境玉米

袁德梽+周浓

摘要:根据玉米(Zea mays L.)CIPK基因EST序列设计引物,采用RT-PCR技术从玉米中克隆了一个ZmCIPK基因。结果表明,ZmCIPK基因cDNA全长1 956 bp,5-非编码区长62 bp, 3-非编码区长337 bp, 编码区长1 557 bp,编码518个氨基酸,预测分子量为57.18 kDa,等电点为8.94。氨基酸同源性分析表明,ZmCIPK与高粱的CIPK蛋白质同源性较高。实时定量PCR检测表明,ZmCIPK基因的表达受干旱、盐胁迫和高温诱导,说明玉米ZmCIPK基因可能参与玉米对逆境胁迫的应答。

关键词:玉米(Zea mays L.);ZmCIPK基因;表达模式;逆境

中图分类号:Q786 文献标识码:A 文章编号:0439-8114(2014)15-3665-04

Cloning and Expression Characteristics of Maize ZmCIPK Gene

YUAN De-zhi1,ZHOU Nong2

(1.Chongqing Three Gorges Vocational College, Chongqing 404155, China;

2.College of Life Science & Engineering, Chongqing Three Gorges University, Chongqing 404000, China)

Abstract: Based on EST sequence of maize(Zea mays L.) CIPK gene, the primers were designed. RT-PCR method was used to clone ZmCIPK gene from maize. The results showed that the full length of ZmCIPK gene cDNA was 1 956 bp, including a 62 bp 5′-UTR, a 337 bp 3′- UTR and an ORF of 1 557 bp. This cDNA sequence encoded a polypepide of 518 amino acid residues with a predicted molecular weight of 57.18 kDa and a basic isoelectric point of 8.94. The amino acid sequence demonstrated that ZmCIPK had a high homology with CIPK from Sorghum bicolor. Results of Quantitative real-time PCR showed that the ZmCIPK gene expressed was induced by drought, high salinity and high temperature. The expression patterns of ZmCIPK under different stresses indicated that this gene might be involved in regulating response of maize to stress.

Key words:maize(Zea mays L.);ZmCIPK gene; expression patterns; stress

收稿日期:2014-01-10

基金项目:重庆市教委科学技术研究项目(KJ131902)

作者简介:袁德梽(1968-),男,重庆万州人,副教授,主要从事高职高专教育管理与教学研究,(电话)18971394585(电子信箱)

610406654@qq.com。

真核细胞中钙(Ca2+)是普遍存在的第二信使,在信号传导过程中具有重要的作用[1]。Ca2+信号通过Ca2+结合蛋白进行传递。目前,存在3类Ca2+结合蛋白:钙调素[2]及类钙调素蛋白[3](Calmodulin and calmodulin-like proteins)、钙依赖性蛋白激酶[4](Ca2+-dependent protein kinases,CDPK)和类钙调磷酸酶B蛋白[5](Calcineurin B-like protein,CBLs)。CBL蛋白自身不具有功能,必须与CIPK(CBL-interacting protein kinase)结合才具有功能。在植物中,CIPK是由多基因家族编码的一类具有丝氨酸/苏氨酸结合位点的蛋白激酶[1]。前人研究发现拟南芥有25个CIPK基因[6],水稻有30个CIPK基因[7]。CIPK在植物逆境胁迫应答中具有重要的功能。例如,过量表达玉米ZmCIPK16可以提高转基因拟南芥的耐盐能力[8]。

玉米(Zea mays L.)是重要的粮食作物和饲料来源。干旱、高盐和极端温度等逆境胁迫严重影响玉米的分布和产量。通过转基因的方法,将逆境相关基因进行转化,是提高玉米抗逆性的一种有效方法。本研究利用RT-PCR方法从玉米中克隆了1个ZmCIPK基因,并利用实时定量PCR方法分析了ZmCIPK基因在不同逆境胁迫下的表达特性,可为进一步分析ZmCIPK基因在逆境胁迫中的功能提供线索。

1 材料与方法

1.1 材料

供试材料为玉米品种旱玉5号。

1.2 试验仪器和药剂

DNA Marker、RNA提取试剂盒、凝胶回收试剂盒、大肠杆菌DH5a、感受态购于天根生化科技北京有限公司,LA-Taq酶、pMD18-T载体、2×SYBR Premix Ex Taq购于宝生物工程大连有限公司。endprint

1.3 方法

1.3.1 玉米材料处理 玉米种子经0.1%HgCl2消毒15 min,并用蒸馏水冲洗3遍,播种于装有蛭石的盒子中,在培养箱中以28 ℃,16 h光/8 h暗的条件培养至三叶期。对三叶期的玉米分别进行脱水干旱胁迫、300 mmol/L NaCl胁迫和热胁迫(45 ℃)处理,分别取处理0、2、4、6、12和24 h 的叶片,立即经液氮冷冻,-80 ℃保存,供提取总RNA。

1.3.2 RNA提取及cDNA第一链的合成 根据RNA提取试剂TRIzol的操作说明书提取不同胁迫处理的玉米叶片总RNA,总RNA用DNaseⅠ处理,除去基因组DNA。按照反转录试剂盒的操作步骤合成cDNA第一链,产物作为基因克隆和荧光定量PCR的模板。

1.3.3 ZmCIPK基因全长cDNA的克隆及分析 根据ZmCIPK基因拼接序列设计1对特异引物, CIPK-F:(5'-AGCTGCCTGCCTCCGCTGCCGGCCGTGC-3')和CIPK-R:(5'-AGCATGATGGTTAATCGAAATATTACGAA-3'),以玉米叶片cDNA 第一链为模板,扩增基因全长cDNA。50 μL体系中含cDNA(20 ng/μL)1 μL,2×GC-PCR buffer 25 μL,dNTP(10 mmol/L)2 μL,引物(25 μmol/L)1 μL 和LA-Taq酶(5 U/μL)0.5 μL,ddH2O补足50 μL。PCR程序为:94 ℃预变性4 min;94 ℃ 30 s,60 ℃ 45 s,72 ℃延伸2 min,共35个循环;72 ℃延伸10 min。PCR 产物置于1.2%琼脂糖中电泳,用紫外凝胶成像仪观察结果。采用凝胶回收试剂盒回收目的片段,回收产物与pMD18-T载体连接后转化E.coli DH5α 感受态细胞,涂于含有氨苄青霉素的LB 固体培养基上,过夜培养,挑取白色克隆,培养12 h 后,进行菌液PCR检测,阳性克隆送北京奥科鼎盛生物科技有限公司测序。

利用DNAMAN软件和BLAST 检索GenBank 进行多重序列比对和同源性分析。

1.3.4 实时定量PCR 依据qRT-PCR引物设计要求,使用Premier 5.0 设计ZmCIPK 特异性引物ZmC-qF:(5'-GCTCTCTACCACGTCCAGCAAGTC-3')和ZmC-qR:(5′- CCTCCAATTTGGTTATGATATCTGAC-3′),扩增长度为150 bp。玉米内参基因GAPDH(Glyceraldehyde -3-phosphate dehydrogenase,甘油醛-3-磷酸脱氢酶)用于对不同样品cDNA 模板的均一化,所用引物为5′-CCCTTCATCACCACGGACTAC-3′和5′-AACCTTCTTGGCACCAC CCT-3′。20 μL PCR 扩增体系为10 μL 2×SYBR Premix Ex Taq,正反向引物各0.2 μmol/L,模板cDNA 50~100 ng/μL。采用ABI7000型荧光定量PCR仪进行实时定量PCR分析,每个样品3次重复。PCR 程序为95 ℃ 3 min, 95 ℃ 5 s,59 ℃ 20 s,72 ℃ 15 s,共45个循环;采用2-△△CT方法对数据进行分析。试验进行3次生物学重复。

2 结果与分析

2.1 ZmCIPK基因的克隆及分析

根据拼接序列,设计1对引物,采用RT-PCR方法从玉米叶片中克隆了1个ZmCIPK基因。ZmCIPK全长cDNA为1 956 bp,5-非编码(UTR)区长62 bp,3-UTR长337 bp,编码区长1 557 bp,编码518个氨基酸(图1)。根据ZmCIPK推测的氨基酸序列预测分子量为57.18 kDa,等电点为8.94。ZmCIPK蛋白的N端区包含1个激酶结构域,在C端包含1个CIPK家族中保守的NAF调节结构域(图2)。

同源性分析表明,ZmCIPK蛋白与高粱、小麦、水稻和大麦中的CIPK蛋白高度同源,一致性达76%~96%,其中与高粱CIPK蛋白的一致性达到95%(图3)。

2.2 ZmCIPK基因的表达特性

为了分析ZmCIPK基因的功能,采用实时定量PCR方法分析ZmCIPK基因在不同非生物胁迫下的表达特性。如图4、图5、图6所示,在PEG胁迫下,ZmCIPK基因的表达在胁迫2 h后受诱导上调表达,在12 h达到最大值,然后表达量降低。在NaCl胁迫下,ZmCIPK基因的表达在胁迫2 h后受诱导上调表达,然后表达量降低。在高温胁迫下,ZmCIPK基因的表达在胁迫2 h后受诱导上调表达,在处理6 h达到最大值,随后表达量下降。以上这些结果表明,ZmCIPK基因的表达受高盐和高温诱导,说明ZmCIPK基因参与玉米对干旱、高盐和高温胁迫的诱导,可能在玉米对逆境胁迫忍耐中发挥作用。

3 讨论

干旱、盐碱和极端温度等逆境胁迫严重影响植物的生长和发育进程[9]。植物在进化的过程中,为了抵抗不利的外界环境条件,在生理、细胞和分子水平上形成了多种防御机制。植物通过改变大量基因的表达来应答各种逆境胁迫。这些表达变化的基因可以分为两类,一类为细胞代谢和抗逆基因;另一类为调控基因,包括转录因子及蛋白激酶[10]。前人研究表明,逆境胁迫诱导CIPKs基因的表达,这些基因在植物应答逆境胁迫的信号传导过程中具有重要的作用[2]。本研究克隆了1个玉米ZmCIPK基因并发现在干旱、高盐和高温胁迫条件下,玉米ZmCIPK基因的表达受诱导,说明ZmCIPK基因可能在玉米对干旱、高盐和高温胁迫忍耐中发挥作用。下一步将构建ZmCIPK基因植物表达载体,转化到玉米中,对该基因在逆境胁迫中的功能进行进一步分析。

参考文献:endprint

[1] LUAN S.The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci,2009,14(1):37-42.

[2] YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plant[J].Trends Plant Sci, 2003,8(10): 505-512.

[3] JEONG J C, SHIN D, LEE J, et al. Isolation and characterization of a novel calcium/calmodulin -dependent protein kinase, AtCK, from Arabidopsis[J]. Mol Cells, 2007, 24(2):276-282.

[4] HARMON A C,GRIBSKOV M, HARPER J F. CDPKs: A kinase for every Ca2+ signal[J]. Trends Plant Sci,2000,5(4): 154-159.

[5] LUAN S, KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell, 2002,14(Suppl):389-400.

[6] ALBRECHT V, RITZ O,LINDER S,et al.The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinase[J]. EMBO J, 2001,20(5):1051-1063.

[7] KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004,134(1):43-58.

[8] ZHAO J F,SUN Z F, ZHENG J,et al.Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Mol Biol, 2009, 69(6):661-674.

[9] CHEN T H,MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol,2002,5(3):250-257.

[10] CHEONG Y H,MOON B C,KIM J K,et al.BWMK1,a rice itogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,13(4):1961-1972.endprint

[1] LUAN S.The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci,2009,14(1):37-42.

[2] YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plant[J].Trends Plant Sci, 2003,8(10): 505-512.

[3] JEONG J C, SHIN D, LEE J, et al. Isolation and characterization of a novel calcium/calmodulin -dependent protein kinase, AtCK, from Arabidopsis[J]. Mol Cells, 2007, 24(2):276-282.

[4] HARMON A C,GRIBSKOV M, HARPER J F. CDPKs: A kinase for every Ca2+ signal[J]. Trends Plant Sci,2000,5(4): 154-159.

[5] LUAN S, KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell, 2002,14(Suppl):389-400.

[6] ALBRECHT V, RITZ O,LINDER S,et al.The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinase[J]. EMBO J, 2001,20(5):1051-1063.

[7] KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004,134(1):43-58.

[8] ZHAO J F,SUN Z F, ZHENG J,et al.Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Mol Biol, 2009, 69(6):661-674.

[9] CHEN T H,MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol,2002,5(3):250-257.

[10] CHEONG Y H,MOON B C,KIM J K,et al.BWMK1,a rice itogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,13(4):1961-1972.endprint

[1] LUAN S.The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci,2009,14(1):37-42.

[2] YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plant[J].Trends Plant Sci, 2003,8(10): 505-512.

[3] JEONG J C, SHIN D, LEE J, et al. Isolation and characterization of a novel calcium/calmodulin -dependent protein kinase, AtCK, from Arabidopsis[J]. Mol Cells, 2007, 24(2):276-282.

[4] HARMON A C,GRIBSKOV M, HARPER J F. CDPKs: A kinase for every Ca2+ signal[J]. Trends Plant Sci,2000,5(4): 154-159.

[5] LUAN S, KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell, 2002,14(Suppl):389-400.

[6] ALBRECHT V, RITZ O,LINDER S,et al.The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinase[J]. EMBO J, 2001,20(5):1051-1063.

[7] KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004,134(1):43-58.

[8] ZHAO J F,SUN Z F, ZHENG J,et al.Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Mol Biol, 2009, 69(6):661-674.

[9] CHEN T H,MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol,2002,5(3):250-257.

[10] CHEONG Y H,MOON B C,KIM J K,et al.BWMK1,a rice itogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,13(4):1961-1972.endprint

猜你喜欢

逆境玉米
How adversity makes you stronger逆境如何让你更强大
收玉米啦!
玉米适当晚收好处多
逆境中的哲学
完形填空Ⅳ