APP下载

精准灌溉设备的控制算法

2014-10-28戴薛

湖北农业科学 2014年15期

戴薛

摘要:提出了一种开关控制与模糊控制相结合的双模控制算法,适用于以土壤含水率为被控对象的灌溉控制系统,属于自动闭环控制。此算法应用于自主研发的低成本节水灌溉控制系统进行测试,结果证明该算法能有效控制土壤含水率,可以适时适量灌溉,达到了精准灌溉的要求。同时该算法使得灌溉系统不仅节约了水资源,还节省了人工维护成本。

关键词:精准灌溉;双模控制算法;土壤含水率

中图分类号:TP273 文献标识码:A 文章编号:0439-8114(2014)15-3659-03

Precise Control Algorithm of Automatic Irrigation System

DAI Xue

(Hubei Ecology Vocational College, Wuhan 430079,China)

Abstract: A dual-mode control algorithm based on on-off control and fuzzy logic control was proposed to enable the irrigation system to realize an antomatic closed-loop control. The algorithm was tested on low-cost water-saving irrigation control system. The results showed that the algorithm could effectively control the soil moisture content, timely satisfy precision irrigation requirements. The algorithm can enable the irrigation system to save water resources and reduce the cost of artificial maintenance.

Keywords: precision irrigation; dual-mode control algorithm; soil moisture content

收稿日期:2013-12-21

作者简介:戴 薛(1982-),女,湖北武汉人,讲师,主要从事信息管理与信息系统的研究工作,(电话)13476008529(电子信箱)

daixue2000@163.com。

随着数字农业的发展,对农业所涉及对象和全过程需要进行数字化、可视化的表达、设计、控制和管理,其根本目的是以最少或最节省的投入,获得最高的经济收益和最佳的环境效益。如何节约农业用水,降低农业园区的维护成本,目前已成为人们共同关注的焦点。在充分利用中水和雨水进行灌溉的同时,还需要发展节水新技术新手段[1,2]。近20年的节水实践证明,节水技术与设施的投入是解决水资源短缺问题的关键之一[3]。

喷灌滴灌技术的推广应用,使灌溉水资源在传输过程的损耗已经降低,进一步提高水资源的利用效率则需要推广精准灌溉,从改进灌溉策略和灌溉系统控制算法的角度入手,依据植物生长所需含水量,精确控制土壤含水率,保证植物生长,同时避免灌溉水资源的浪费。

1 基于土壤含水率变化的灌溉控制概述

以植物生理信息为灌溉指导依据,是近年发展起来的革命性的节水新路径,它检测植物在水分胁迫下的各种生理反应,依此判断植物的水分胁迫状况,计算植物当前需水量并指导灌溉。很多学者在此方面进行了研究,多采用闭环控制系统,取得了一定的成果。此类方法目前存在的瓶颈是直接对植物的生理信息进行监测难以满足在线和实时性的要求。由于植物吸收的水分主要来自土壤,因此土壤含水率与植物生理信息之间存在着密切的关系。通过监测土壤含水率的变化,可以间接了解植物水生理状况,这样解决了在线和实时性的难题。

以土壤含水率为控制对象的精准灌溉控制系统发展较快,控制算法各有特色,如专家系统和模糊控制。采用专家系统的一个主要困难是专家知识库的建立需要大量的数据,数据间的关系复杂。采用模糊控制的优点是避免了建立土壤含水率变化数学模型,不足之处是控制规则来源于人工经验。由于土壤是一个大惯性、非线性的系统,系统的响应时间、滞后时间比较长,单纯依靠模糊控制可能会出现过量灌溉或植物长时间缺水的情况。本研究提出在模糊控制的基础上添加开关控制组成双模控制算法,可以有效避免这种情况的发生。

2 控制系统介绍

本研究提出算法对应的灌溉控制系统由上位计算机、灌溉监测控制器、土壤水分传感器和阀门控制器组成,系统结构如图1所示。其中,上位计算机与灌溉监测控制器采用无线通讯方式,灌溉监测控制器、土壤水分传感器和阀门控制器通过RS-485总线相连。土壤水分传感器用于监测土壤含水率,阀门控制器用于控制喷灌系统的电磁阀,电磁阀开启的时间长度与灌溉量成正比。

上位计算机定时通过无线通讯模块向灌溉监测控制器发送数据采集请求;灌溉监测控制器对上位计算机的请求进行分析,并通过RS-485总线向相应的土壤水分传感器发送数据采集命令;土壤水分传感器采集土壤含水率数据,通过RS-485总线将数据返回给灌溉监测控制器,再由灌溉监测控制器返回给上位计算机;上位计算机按照控制算法对土壤含水率数据作分析处理,并根据处理结果向灌溉监测控制器发送阀门开关请求,经灌溉监测控制器向阀门控制器发送开关阀门的控制命令;阀门控制器根据控制命令控制阀门的开关状态,并将相关信息经由灌溉监测控制器返回给上位计算机。周而复始,构成一个闭环控制的自动灌溉系统。

3 算法介绍

3.1 系统控制原理及控制参数endprint

开关控制与模糊控制相结合的双模控制算法,系统控制原理框图如图2所示。

根据开关和模糊双模控制系统的控制需要,设定下列控制变量:

1)植物生存的土壤含水率阈值R。植物生存的土壤含水率阈值R是指特定植物维持生命所需的最低土壤含水率,该变量用以防止植物根部附近土壤的含水率低于生存阈值。

2)土壤含水率设定值为sv。可由用户根据具体植物的需水特性设置。控制系统以此作为控制目标,使土壤含水率保持在该值附近。

3)模糊控制限为b。该数值为正数,用于计算模糊控制上下限,当系统采集的土壤含水率介于该范围时,系统采用模糊控制算法,超出该范围时采用开关控制算法。

4)系统控制周期T(min)。由于土壤是复杂的大滞后系统,建立相关数学模型预测含水率变化存在极大困难,因此设置此变量,控制系统每隔时间T对土壤含水率进行一次采集调控,用于减低输入滞后的影响,防止系统误操作。

控制算法中用到的其他变量可依据下列方式计算得出:

植物保护阈值:r=R+c,其中c为常数。当土壤含水率接近或达到植物生存的土壤含水率阈值时,水胁迫对植物的正常生命活动已经构成了比较严重的影响,此时再进行灌溉已经难以避免对植物造成的伤害。因此,系统的监测和控制需要一定的提前量,植物保护阈值正是为此而设置,当土壤含水率接近或达到该值时,系统即采取相应动作。对土壤含水率变化长期监测的结果,在北京地区夏季晴天情况下,草坪土壤含水率日均下降2个百分点(传感器埋放深度为12 cm)。因此,c值可设为2,即将系统的反应时间提前1 d,保证植物的正常生长。模糊控制上限为sv+b,下限为sv-b。

3.2 控制算法

系统的控制算法由3部分组成,分别为植物保护控制、开关控制和模糊控制。各部分分工、相互协调保证灌溉控制系统的稳定可靠。

1)植物保护控制。在整个控制过程中,植物保护控制是实时起作用的。若土壤含水率低于r,则启动植物保护程序,系统打开相应的阀门,直到土壤含水率上升至模糊控制范围内。

2)开关控制。当系统的控制周期来临时,系统采集土壤含水率数据,进行误差判别:e=sv-y。其中,y为土壤水分传感器采集到的土壤含水率,e为误差。当误差e>b时,系统打开输出相应阀门的开启时间长度,进行灌溉;当误差e<-b时,系统关闭相应的阀门,停止灌溉。

3)模糊控制。当系统的控制周期来临时,系统采集土壤含水率数据,进行误差判别,当-b

模糊控制器的输入分别为误差e=sv-y和误差变化率ec=de/dt,输出为灌溉时间长度u(min)。e和ec的基本论域分别为[-4%,4%]、[-2%,2%],其模糊变量E和EC的论域均为[-6,6],模糊集均为{NB,NM,NS,0,PS,PM,PB}。u的基本论域为[0,30], 其模糊变量U的论域为[0,6], 模糊集为{O, PS, PM, PB}。 模糊控制表的求取过程参考文献[4-6]。系统得模糊控制表如表1所示。

通过植物保护控制、开关控制和模糊控制的结合,不仅可以保证植物的正常生长,还可以保证土壤含水率稳定在用户设定值附近,做到适量灌溉。

3.3 灌溉系统的适时灌溉

由于在实际生活中,绿地的灌溉受到气象和人为因素的影响,例如在夏季阳光强烈的时间段或晚上进行灌溉会对植物的正常生理活动造成伤害,还容易引发草坪的病害。为此,系统在软件中提供了相应的接口,可以设置适合灌溉的时间段,如8:00~10:00或15:00~17:00,这样可以实现适时灌溉。

4 小结

由于土壤是一个大惯性、非线性的系统,系统的响应时间、滞后时间比较长,并且绿地的灌溉受到很多自然或人为因素的影响,因此单独依靠专家系统或模糊控制难以满足实际使用的需要。研究提出在模糊控制的基础上结合了开关控制的双模控制算法,并增加了植物保护控制和适宜灌溉时间段的设置,确保了绿地灌溉的适时适量。运用该算法自主研发的低成本节水灌溉控制系统已被成功应用于北京林业大学精准灌溉示范区。实践证明,该算法能有效控制灌溉系统运行,可以做到适时适量灌溉,取得了良好的效果。整个系统运行可靠,节约了水资源和人工维护成本。

参考文献:

[1] 王鹏飞,刘俊良,臧景红.城市节水设施综合效益分析[J].中国给水排水,2002(11):82-84.

[2] 黄永基,陈 明.我国节水现状、问题及对策[J].中国水利,1999(1):42-43.

[3] 杨战社,陈 菲.生态小区水资源的开源节流[J].住宅科技, 2005(7):26-30.

[4] 刘叶飞,陈志刚.节水自动灌溉模糊控制系统设计[J].排灌机械, 1999(3):51-53.

[5] 张建仁,王 莉.MATLAB在模糊控制系统仿真中的应用[J].自动化与仪表,2002(6):53-55.

[6] 郭正琴,王一鸣,杨卫中,等.基于模糊控制的智能灌溉控制系统[J].农机化研究,2006(12):103-108.

开关控制与模糊控制相结合的双模控制算法,系统控制原理框图如图2所示。

根据开关和模糊双模控制系统的控制需要,设定下列控制变量:

1)植物生存的土壤含水率阈值R。植物生存的土壤含水率阈值R是指特定植物维持生命所需的最低土壤含水率,该变量用以防止植物根部附近土壤的含水率低于生存阈值。

2)土壤含水率设定值为sv。可由用户根据具体植物的需水特性设置。控制系统以此作为控制目标,使土壤含水率保持在该值附近。

3)模糊控制限为b。该数值为正数,用于计算模糊控制上下限,当系统采集的土壤含水率介于该范围时,系统采用模糊控制算法,超出该范围时采用开关控制算法。

4)系统控制周期T(min)。由于土壤是复杂的大滞后系统,建立相关数学模型预测含水率变化存在极大困难,因此设置此变量,控制系统每隔时间T对土壤含水率进行一次采集调控,用于减低输入滞后的影响,防止系统误操作。

控制算法中用到的其他变量可依据下列方式计算得出:

植物保护阈值:r=R+c,其中c为常数。当土壤含水率接近或达到植物生存的土壤含水率阈值时,水胁迫对植物的正常生命活动已经构成了比较严重的影响,此时再进行灌溉已经难以避免对植物造成的伤害。因此,系统的监测和控制需要一定的提前量,植物保护阈值正是为此而设置,当土壤含水率接近或达到该值时,系统即采取相应动作。对土壤含水率变化长期监测的结果,在北京地区夏季晴天情况下,草坪土壤含水率日均下降2个百分点(传感器埋放深度为12 cm)。因此,c值可设为2,即将系统的反应时间提前1 d,保证植物的正常生长。模糊控制上限为sv+b,下限为sv-b。

3.2 控制算法

系统的控制算法由3部分组成,分别为植物保护控制、开关控制和模糊控制。各部分分工、相互协调保证灌溉控制系统的稳定可靠。

1)植物保护控制。在整个控制过程中,植物保护控制是实时起作用的。若土壤含水率低于r,则启动植物保护程序,系统打开相应的阀门,直到土壤含水率上升至模糊控制范围内。

2)开关控制。当系统的控制周期来临时,系统采集土壤含水率数据,进行误差判别:e=sv-y。其中,y为土壤水分传感器采集到的土壤含水率,e为误差。当误差e>b时,系统打开输出相应阀门的开启时间长度,进行灌溉;当误差e<-b时,系统关闭相应的阀门,停止灌溉。

3)模糊控制。当系统的控制周期来临时,系统采集土壤含水率数据,进行误差判别,当-b

模糊控制器的输入分别为误差e=sv-y和误差变化率ec=de/dt,输出为灌溉时间长度u(min)。e和ec的基本论域分别为[-4%,4%]、[-2%,2%],其模糊变量E和EC的论域均为[-6,6],模糊集均为{NB,NM,NS,0,PS,PM,PB}。u的基本论域为[0,30], 其模糊变量U的论域为[0,6], 模糊集为{O, PS, PM, PB}。 模糊控制表的求取过程参考文献[4-6]。系统得模糊控制表如表1所示。

通过植物保护控制、开关控制和模糊控制的结合,不仅可以保证植物的正常生长,还可以保证土壤含水率稳定在用户设定值附近,做到适量灌溉。

3.3 灌溉系统的适时灌溉

由于在实际生活中,绿地的灌溉受到气象和人为因素的影响,例如在夏季阳光强烈的时间段或晚上进行灌溉会对植物的正常生理活动造成伤害,还容易引发草坪的病害。为此,系统在软件中提供了相应的接口,可以设置适合灌溉的时间段,如8:00~10:00或15:00~17:00,这样可以实现适时灌溉。

4 小结

由于土壤是一个大惯性、非线性的系统,系统的响应时间、滞后时间比较长,并且绿地的灌溉受到很多自然或人为因素的影响,因此单独依靠专家系统或模糊控制难以满足实际使用的需要。研究提出在模糊控制的基础上结合了开关控制的双模控制算法,并增加了植物保护控制和适宜灌溉时间段的设置,确保了绿地灌溉的适时适量。运用该算法自主研发的低成本节水灌溉控制系统已被成功应用于北京林业大学精准灌溉示范区。实践证明,该算法能有效控制灌溉系统运行,可以做到适时适量灌溉,取得了良好的效果。整个系统运行可靠,节约了水资源和人工维护成本。

参考文献:

[1] 王鹏飞,刘俊良,臧景红.城市节水设施综合效益分析[J].中国给水排水,2002(11):82-84.

[2] 黄永基,陈 明.我国节水现状、问题及对策[J].中国水利,1999(1):42-43.

[3] 杨战社,陈 菲.生态小区水资源的开源节流[J].住宅科技, 2005(7):26-30.

[4] 刘叶飞,陈志刚.节水自动灌溉模糊控制系统设计[J].排灌机械, 1999(3):51-53.

[5] 张建仁,王 莉.MATLAB在模糊控制系统仿真中的应用[J].自动化与仪表,2002(6):53-55.

[6] 郭正琴,王一鸣,杨卫中,等.基于模糊控制的智能灌溉控制系统[J].农机化研究,2006(12):103-108.

开关控制与模糊控制相结合的双模控制算法,系统控制原理框图如图2所示。

根据开关和模糊双模控制系统的控制需要,设定下列控制变量:

1)植物生存的土壤含水率阈值R。植物生存的土壤含水率阈值R是指特定植物维持生命所需的最低土壤含水率,该变量用以防止植物根部附近土壤的含水率低于生存阈值。

2)土壤含水率设定值为sv。可由用户根据具体植物的需水特性设置。控制系统以此作为控制目标,使土壤含水率保持在该值附近。

3)模糊控制限为b。该数值为正数,用于计算模糊控制上下限,当系统采集的土壤含水率介于该范围时,系统采用模糊控制算法,超出该范围时采用开关控制算法。

4)系统控制周期T(min)。由于土壤是复杂的大滞后系统,建立相关数学模型预测含水率变化存在极大困难,因此设置此变量,控制系统每隔时间T对土壤含水率进行一次采集调控,用于减低输入滞后的影响,防止系统误操作。

控制算法中用到的其他变量可依据下列方式计算得出:

植物保护阈值:r=R+c,其中c为常数。当土壤含水率接近或达到植物生存的土壤含水率阈值时,水胁迫对植物的正常生命活动已经构成了比较严重的影响,此时再进行灌溉已经难以避免对植物造成的伤害。因此,系统的监测和控制需要一定的提前量,植物保护阈值正是为此而设置,当土壤含水率接近或达到该值时,系统即采取相应动作。对土壤含水率变化长期监测的结果,在北京地区夏季晴天情况下,草坪土壤含水率日均下降2个百分点(传感器埋放深度为12 cm)。因此,c值可设为2,即将系统的反应时间提前1 d,保证植物的正常生长。模糊控制上限为sv+b,下限为sv-b。

3.2 控制算法

系统的控制算法由3部分组成,分别为植物保护控制、开关控制和模糊控制。各部分分工、相互协调保证灌溉控制系统的稳定可靠。

1)植物保护控制。在整个控制过程中,植物保护控制是实时起作用的。若土壤含水率低于r,则启动植物保护程序,系统打开相应的阀门,直到土壤含水率上升至模糊控制范围内。

2)开关控制。当系统的控制周期来临时,系统采集土壤含水率数据,进行误差判别:e=sv-y。其中,y为土壤水分传感器采集到的土壤含水率,e为误差。当误差e>b时,系统打开输出相应阀门的开启时间长度,进行灌溉;当误差e<-b时,系统关闭相应的阀门,停止灌溉。

3)模糊控制。当系统的控制周期来临时,系统采集土壤含水率数据,进行误差判别,当-b

模糊控制器的输入分别为误差e=sv-y和误差变化率ec=de/dt,输出为灌溉时间长度u(min)。e和ec的基本论域分别为[-4%,4%]、[-2%,2%],其模糊变量E和EC的论域均为[-6,6],模糊集均为{NB,NM,NS,0,PS,PM,PB}。u的基本论域为[0,30], 其模糊变量U的论域为[0,6], 模糊集为{O, PS, PM, PB}。 模糊控制表的求取过程参考文献[4-6]。系统得模糊控制表如表1所示。

通过植物保护控制、开关控制和模糊控制的结合,不仅可以保证植物的正常生长,还可以保证土壤含水率稳定在用户设定值附近,做到适量灌溉。

3.3 灌溉系统的适时灌溉

由于在实际生活中,绿地的灌溉受到气象和人为因素的影响,例如在夏季阳光强烈的时间段或晚上进行灌溉会对植物的正常生理活动造成伤害,还容易引发草坪的病害。为此,系统在软件中提供了相应的接口,可以设置适合灌溉的时间段,如8:00~10:00或15:00~17:00,这样可以实现适时灌溉。

4 小结

由于土壤是一个大惯性、非线性的系统,系统的响应时间、滞后时间比较长,并且绿地的灌溉受到很多自然或人为因素的影响,因此单独依靠专家系统或模糊控制难以满足实际使用的需要。研究提出在模糊控制的基础上结合了开关控制的双模控制算法,并增加了植物保护控制和适宜灌溉时间段的设置,确保了绿地灌溉的适时适量。运用该算法自主研发的低成本节水灌溉控制系统已被成功应用于北京林业大学精准灌溉示范区。实践证明,该算法能有效控制灌溉系统运行,可以做到适时适量灌溉,取得了良好的效果。整个系统运行可靠,节约了水资源和人工维护成本。

参考文献:

[1] 王鹏飞,刘俊良,臧景红.城市节水设施综合效益分析[J].中国给水排水,2002(11):82-84.

[2] 黄永基,陈 明.我国节水现状、问题及对策[J].中国水利,1999(1):42-43.

[3] 杨战社,陈 菲.生态小区水资源的开源节流[J].住宅科技, 2005(7):26-30.

[4] 刘叶飞,陈志刚.节水自动灌溉模糊控制系统设计[J].排灌机械, 1999(3):51-53.

[5] 张建仁,王 莉.MATLAB在模糊控制系统仿真中的应用[J].自动化与仪表,2002(6):53-55.

[6] 郭正琴,王一鸣,杨卫中,等.基于模糊控制的智能灌溉控制系统[J].农机化研究,2006(12):103-108.