APP下载

连续皮带机系统的维护管理

2014-10-21王建军

建筑工程技术与设计 2014年35期

王建军

【摘要】连续皮带机系统运输效率高、可靠性高,基本不受运输距离的延长而影响运输速度,已经成为TBM掘进施工出渣运输的主流方式。为了减少衬砌施工和掘进施工之间的相互影响,加快衬砌的施工进度,减少工期时间,提高施工安全性,可采用连续皮带机系统运送出渣。本次研究结合西秦岭隧道工程实例,对TBM同步衬砌条件中以连续皮带机系统实际使用中存在的问题进行分析,并提出相应的解决措施。

【关键词】TBM、同步衬砌、连续皮带机、维护使用

TBM连续掘进长度不断增加,有轨运输出渣已完全不能满足长大隧道TBM施工时出渣运输的需求,连续皮带机系统运输效率高、可靠性高,基本不受运输距离的延长而影响运输速度,已经成为TBM掘进施工出渣运输的主流方式。连续皮带机系统虽然具有安全高效等优点,但系统相对比较复杂,任何一个环节出现问题,都会导致整个出渣系统无法运转,进而导致TBM无法施工,影响工程进度。

同步衬砌技术在我国的应用时间较短,在中天山铁路隧道的TBM掘进中首次采用此种技术,并在實际应用中取得理想效果[1]。西秦岭隧道工程也同样采用同步衬砌技术,西秦岭隧道全程19.8km,掘进出渣采用皮带机运送模式,这点和中天山隧道不同,该工程采用的连续皮带机需要穿越过同步衬砌车,所引来的衬砌车其结构以及整体设计都有工程自己的特点[2]。在出渣情况下,衬砌混凝土受到的动载震动还会对混凝土的凝固质量造成影响,在出渣及衬砌过程中,皮带机需保持运动姿态不变,这些问题都影响着工程有效开展,这点也是本文研究的重点。

1.工程概况

西秦岭隧道工程位于兰渝铁路中段,在甘肃省陇南市境内,隧道全长约为28.24km,于左右线分别设置2条单线隧道,最大埋深约为1.4km,依照工程设计,本隧道工程以TBM掘进方式及钻爆法联合进行,1段全程约5.59km,2段全程约7.34km。TBM1段掘进在出口处进行通风及出渣,2段则于斜井处出渣及通风。

2.连续皮带机出渣系统

连续皮带机出渣系统主要包括:卸载滚筒总成、主驱动及电器驱动控制系统、储带仓总成、皮带张紧机构总成及电器驱动控制系统、皮带调偏及延伸安装窗口、移动尾段、急停系统、皮带托辊支架和皮带[3]。

西秦岭TBM配套连续皮带机采用ST2000型钢丝皮带,皮带宽度914mm,运行速度达3.05m/s,输送能力达600m?/h。整条皮带机采用4套300KW变频电机配减速机驱动,驱动滚筒直径约1098.6mm,表面采用带陶瓷片的覆盖,以减少皮带打滑的可能性。储带仓总长87.075m,包括18个改向和张紧滚筒,共能存储10层皮带,共计650米。

3.同步衬砌技术的应用分析

3.1同步衬砌施工方案

本次施工依照同步衬砌台车不同的位置设置,一共设计了两种同步衬砌的具体方案:同步衬砌车和TBM设计成一个配套整体,另一方案为使同步衬砌车和TBM始终保持一个合理间距,每种方案使用的模板并非同一类型,分别是液压钢模与穿行液压钢模[4]。

通过对两种方案的综合对比,将同步衬砌车装置于TBM的后配套处构成一个整体的施工方案并不能适用于本次工程中。而另一种衬砌车和TBM始终保持一定间距,利用穿行钢模的方式,因空间布局较难,也同样不可取,因此本次工程最终确定为衬砌车和TBM后配套始终保持一定间距,并选取液压钢模作为模板的施工方案。

3.2同步衬砌施工规划

本次施工以TBM掘进施工和二次衬砌平行操作,二次衬砌在TBM掘进之后适时进行。衬砌台车的结构设计必须将连续皮带机、水管、通信电缆、高压电缆、通风软管以及运行车辆穿行的因素考虑在内,且台车在操作过程中必须保证TBM所需材料运输、皮带传送、高压供电、照明通风、给排水及通讯的持续进行[5]。

TBM掘进段的衬砌施工需安排2台基准班级为452cm的大型模板液压衬砌车(以下成车1,车2),紧跟TBM施工,车1需紧跟TBM进行施工,对于围岩情况差的洞段进行及时衬砌,可进行多次施工,车2设置于车1后,预先留置横通道等施工位置进行施工,TBM的掘进速度为平均0.6km/月。

3.3施工流程

TBM在进入洞口时,车1、车2同时紧跟入洞,在洞口约100m处停车,待矮边墙施工完成且满足一定强度,再跟至TBM后方的适当处,开始和TBM同步衬砌。车3跟车1、车2同时入洞,首先进行洞口处的V级围岩衬砌,之后接着进行预备洞中可进行二次衬砌的施工段,最终达到TBM的出发洞之后暂停,等TBM掘进第一阶段彻底完成,且连续皮带机和给排水、通风等管道拆除之后,车3再从内部开始向外进行预备洞中其它部分的二次衬砌。

4.存在的问题及原因分析

本次工程在实际操作中存在几点影响施工的重点问题,具体如下:

(1)工程初期偶见皮带机跑偏以及石渣坠落的故障,影响施工正常开展,经分析得知连续皮带机的运行要求较高,在运转时皮带架须始终维持在出渣时的位置及状态,主要是因为没有良好固定位置,造成此类问题的出现。

(2)工程施工中曾出现衬砌车偏载的情况,对施工造成不利影响,经分析得知这是由于皮带机的静态荷载所造成的,此外在运转时,还会因动态荷载致使养护状态下的混凝土出现质量下降等情况,进而造成开裂、质量差等问题。

(3)皮带机在穿越衬砌车时其位置不能发生改变,这就要求台车上需要留有固定且足够的空间,此外台架下还需要有轨运输车不断运行,这也是台车台架以及模板设计的一大难题。

5.解决方案

5.1为保证无论台车是何种工况,皮带机都能维持在出渣时的状态机位置,我们采取的解决方案是在台架与模板见流出足够大的专用通道与滑轨空间,以此可承载皮带机。为保障皮带机持续出渣运行,在穿越台车时,单纯对在洞壁固定用的三角支撑进行拆除,并由台车上设置的专用滑轨来承载皮带机,在台车的移动过程中,将前方皮带机上的三角支撑进行拆除,同时在后部将三角支撑进行安装。

5.2为防止偏载以及震动对于台车和混凝土的影响,我们采用的方案是利用荷载转移与综合减振法,以此防止皮带机在运行时产生的振动向模板和台架传送。

5.3为了解决空间通行要求,在施工条件进行实地勘察,并对台车的结构、材料等参数进行多次计算,以此来确定台车的断面设计,来满足空间通行要求。

6.结论与讨论

西秦岭隧道以本文所分析的施工方案,现已全面完工,并于2014年7月正式全线贯通,通过实践证明该种方案的同步衬砌车可实现良好稳定运转,各个工序在此方案下实现紧密衔接,并通过施工组织中的不断磨合,施工后期的衬砌速度不断提升。总之,西秦岭隧道的连续皮带出渣条件下TBM掘进和二次衬砌同步施工方案是国内首创,在实践中也取得良好实效,此种方案具有显著实践意义,值得推广。

参考文献:

[1]许金林,徐赞,王艳波. 西秦岭特长隧道连续皮带机出碴施工关键技术[J]. 隧道建设,2011,31( 6) : 678 - 685.

[2]徐双永,陈大军. 西秦岭隧道皮带机出碴 TBM 同步衬砌技术方案研究[J]. 隧道建设,2010,30( 2) : 125 - 127.

[3]戴润军,杨永强.西秦岭隧道连续皮带机出碴下的同步衬砌施工组织管理[J].隧道建设,2011,31,(4):494—499.

[4]王峻武,陈大军.兰渝铁路西秦岭隧道TBM步进施工技术[J].铁道建筑技术,2011(5):101—106

[5]王艳波. 连续出碴皮带收放装置的设计与实用效果[J]. 隧道建设,2011,31( 6) : 765 - 769.