浅论整体性教学策略的应用
2014-10-11梅红亮�お�
梅红亮�お�
学生个体所处的学习环境,形成的学习技能,思考的方法水平等方面存在差异,致使学生个体之间学习效能出现“参差不齐”.新课标指出,要关注学生个体之间的差异,面向全体学生,坚持统筹兼顾,实施针对不同学生群体的教学策略,让不同学生群体获得实践的时机,在不同学习基础上获得进步和提升.同时,教学实践证明,面向“部分”学生群体的“精英式”教学策略,不能是整体进步发展的教学目标.如何按照新课改要求,实施有效教学策略,促进和提升全体学生共同进步和发展,已成为课堂有效教学教研课题.本人现就运用整体性教学策略,实施有效教学活动,促进全体学生共同进步,从三方面进行简要论述.
一、设置面向全体学生的学习目标,使不同学生群体找准努力方向
学习目标是学生学习实践活动追寻和赶超的标杆,也是学生积极学习攻坚克难的动力.传统教学活动中,部分数学教师脱离学生学习实际,设置统一标准、统一要求的学习目标,致使学生难以前行.初中数学教师设置学习目标时就要“统筹兼顾,关注差异”.在学习目标要求设定过程中,紧密结合学生学习实情,针对不同类型学生学习实际,根据教学目标要求以及重难点,设置具有递进性、层次性的学习目标,使全体学生能够在不同标准要求下“量力而行”,取得实效.如在“相似三角形的性质”一课的教学目标要求设定中,教师根据该节课的教学重难点以及学生个体现实学习情况,按照“统筹兼顾、整体进步”的目标,针对优等生提出“综合应用相似三角形的性质与判定探索三角形中面积之间的关系”的学习要求;针对中等生提出“灵活运用相似三角形的判定和性质,提高分析,推理能力”的学习要求;针对后进生提出“理解掌握相似三角形周长比、面积比与相似比之间的关系,掌握定理的证明方法”的学习要求.教师设定的层次性教学目标,为各类学生群体学习探知、实践探究提出了标准和要求,能够为各类型学生群体整体进步打好“根基”.
二、开展面向全体学生的案例讲解活动,使不同学生群体掌握解题精髓
问题案例是数学学科知识内涵的“精髓”.初中数学教师在案例讲解活动中,就要渗透“整体性教学目标”要求,在引导学生探析问题案例条件、解答问题思路以及案例解答规律等过程中,要有意识地将讲解指导的重心放置在中下等学生群体身上,指引他们进行深入、深刻的学习探究、思考分析活动,更多地将问题案例教学着力点落在中下等学生群体之中,使好、中、差三类学生群体都能掌握一定的解题技能,实现全体学生在案例讲解中整体进步.
在该问题教学中,教师采用“生探究,教师导”的教学方式,先按照“同组异质,异组同质”原则,组成学习小组开展问题案例探析活动.学生小组探析问题条件认为,该问题是考查学生运用平行四边形性质的能力.小组探析问题要求及问题条件后认为,第一小题要证明四边形AC=EF,需要通过找到符合△ABC≌△EFB的条件.第二小题要证明四边形ADFE是平行四边形,可以利用等边三角形的性质以及平行四边形的判定内容进行解答.教师在引导学生探析解题思路时,有意识地要求中下等学生进行阐述讲解活动,教师进行必要的指导,中下等学生群体得出该类型解题思路是:运用数形结合思想,找寻并构建等量关系,进行等量替换.全体学生,特别是中下等学生在教师针对性、整体性地讲解和引导下,对问题解答方法有了清晰、深刻的认识和掌握.同时,又为他们提供实践探究、思考分析的时机,促进不同类型学生群体整体进步和全面发展.
三、组织面向全体学生的评讲活动,使不同学生群体有不同的学习收获
学生学习活动过程及学习表现需要进行实时的指导和评价.教师在阶段性教学活动中,经常会对学生学习活动过程及表现,运用教学评价手段进行客观、公正、全面的评判和指点,以此推进学习活动进程,促进学习习惯养成.初中数学教师在开展评价教学活动中,就可以将整体性教学策略运用其中,针对学生的学习表现、解决问题的过程及方法,引导各类型学生群体组成评价辨析小组,在组内探究、分析、讨论的基础上,让不同类型的学生都能产生认知观点和见解.同时,鼓励中下等学生积极表达自己的观点,运用数学语言阐述对某学生学习活动表现、解题过程方法等方面的感受和观点,引导更多的学生个体参与评析辨析活动,促进评价活动深入开展,教学活动深入推进.
(责任编辑黄桂坚)
学生个体所处的学习环境,形成的学习技能,思考的方法水平等方面存在差异,致使学生个体之间学习效能出现“参差不齐”.新课标指出,要关注学生个体之间的差异,面向全体学生,坚持统筹兼顾,实施针对不同学生群体的教学策略,让不同学生群体获得实践的时机,在不同学习基础上获得进步和提升.同时,教学实践证明,面向“部分”学生群体的“精英式”教学策略,不能是整体进步发展的教学目标.如何按照新课改要求,实施有效教学策略,促进和提升全体学生共同进步和发展,已成为课堂有效教学教研课题.本人现就运用整体性教学策略,实施有效教学活动,促进全体学生共同进步,从三方面进行简要论述.
一、设置面向全体学生的学习目标,使不同学生群体找准努力方向
学习目标是学生学习实践活动追寻和赶超的标杆,也是学生积极学习攻坚克难的动力.传统教学活动中,部分数学教师脱离学生学习实际,设置统一标准、统一要求的学习目标,致使学生难以前行.初中数学教师设置学习目标时就要“统筹兼顾,关注差异”.在学习目标要求设定过程中,紧密结合学生学习实情,针对不同类型学生学习实际,根据教学目标要求以及重难点,设置具有递进性、层次性的学习目标,使全体学生能够在不同标准要求下“量力而行”,取得实效.如在“相似三角形的性质”一课的教学目标要求设定中,教师根据该节课的教学重难点以及学生个体现实学习情况,按照“统筹兼顾、整体进步”的目标,针对优等生提出“综合应用相似三角形的性质与判定探索三角形中面积之间的关系”的学习要求;针对中等生提出“灵活运用相似三角形的判定和性质,提高分析,推理能力”的学习要求;针对后进生提出“理解掌握相似三角形周长比、面积比与相似比之间的关系,掌握定理的证明方法”的学习要求.教师设定的层次性教学目标,为各类学生群体学习探知、实践探究提出了标准和要求,能够为各类型学生群体整体进步打好“根基”.
二、开展面向全体学生的案例讲解活动,使不同学生群体掌握解题精髓
问题案例是数学学科知识内涵的“精髓”.初中数学教师在案例讲解活动中,就要渗透“整体性教学目标”要求,在引导学生探析问题案例条件、解答问题思路以及案例解答规律等过程中,要有意识地将讲解指导的重心放置在中下等学生群体身上,指引他们进行深入、深刻的学习探究、思考分析活动,更多地将问题案例教学着力点落在中下等学生群体之中,使好、中、差三类学生群体都能掌握一定的解题技能,实现全体学生在案例讲解中整体进步.
在该问题教学中,教师采用“生探究,教师导”的教学方式,先按照“同组异质,异组同质”原则,组成学习小组开展问题案例探析活动.学生小组探析问题条件认为,该问题是考查学生运用平行四边形性质的能力.小组探析问题要求及问题条件后认为,第一小题要证明四边形AC=EF,需要通过找到符合△ABC≌△EFB的条件.第二小题要证明四边形ADFE是平行四边形,可以利用等边三角形的性质以及平行四边形的判定内容进行解答.教师在引导学生探析解题思路时,有意识地要求中下等学生进行阐述讲解活动,教师进行必要的指导,中下等学生群体得出该类型解题思路是:运用数形结合思想,找寻并构建等量关系,进行等量替换.全体学生,特别是中下等学生在教师针对性、整体性地讲解和引导下,对问题解答方法有了清晰、深刻的认识和掌握.同时,又为他们提供实践探究、思考分析的时机,促进不同类型学生群体整体进步和全面发展.
三、组织面向全体学生的评讲活动,使不同学生群体有不同的学习收获
学生学习活动过程及学习表现需要进行实时的指导和评价.教师在阶段性教学活动中,经常会对学生学习活动过程及表现,运用教学评价手段进行客观、公正、全面的评判和指点,以此推进学习活动进程,促进学习习惯养成.初中数学教师在开展评价教学活动中,就可以将整体性教学策略运用其中,针对学生的学习表现、解决问题的过程及方法,引导各类型学生群体组成评价辨析小组,在组内探究、分析、讨论的基础上,让不同类型的学生都能产生认知观点和见解.同时,鼓励中下等学生积极表达自己的观点,运用数学语言阐述对某学生学习活动表现、解题过程方法等方面的感受和观点,引导更多的学生个体参与评析辨析活动,促进评价活动深入开展,教学活动深入推进.
(责任编辑黄桂坚)
学生个体所处的学习环境,形成的学习技能,思考的方法水平等方面存在差异,致使学生个体之间学习效能出现“参差不齐”.新课标指出,要关注学生个体之间的差异,面向全体学生,坚持统筹兼顾,实施针对不同学生群体的教学策略,让不同学生群体获得实践的时机,在不同学习基础上获得进步和提升.同时,教学实践证明,面向“部分”学生群体的“精英式”教学策略,不能是整体进步发展的教学目标.如何按照新课改要求,实施有效教学策略,促进和提升全体学生共同进步和发展,已成为课堂有效教学教研课题.本人现就运用整体性教学策略,实施有效教学活动,促进全体学生共同进步,从三方面进行简要论述.
一、设置面向全体学生的学习目标,使不同学生群体找准努力方向
学习目标是学生学习实践活动追寻和赶超的标杆,也是学生积极学习攻坚克难的动力.传统教学活动中,部分数学教师脱离学生学习实际,设置统一标准、统一要求的学习目标,致使学生难以前行.初中数学教师设置学习目标时就要“统筹兼顾,关注差异”.在学习目标要求设定过程中,紧密结合学生学习实情,针对不同类型学生学习实际,根据教学目标要求以及重难点,设置具有递进性、层次性的学习目标,使全体学生能够在不同标准要求下“量力而行”,取得实效.如在“相似三角形的性质”一课的教学目标要求设定中,教师根据该节课的教学重难点以及学生个体现实学习情况,按照“统筹兼顾、整体进步”的目标,针对优等生提出“综合应用相似三角形的性质与判定探索三角形中面积之间的关系”的学习要求;针对中等生提出“灵活运用相似三角形的判定和性质,提高分析,推理能力”的学习要求;针对后进生提出“理解掌握相似三角形周长比、面积比与相似比之间的关系,掌握定理的证明方法”的学习要求.教师设定的层次性教学目标,为各类学生群体学习探知、实践探究提出了标准和要求,能够为各类型学生群体整体进步打好“根基”.
二、开展面向全体学生的案例讲解活动,使不同学生群体掌握解题精髓
问题案例是数学学科知识内涵的“精髓”.初中数学教师在案例讲解活动中,就要渗透“整体性教学目标”要求,在引导学生探析问题案例条件、解答问题思路以及案例解答规律等过程中,要有意识地将讲解指导的重心放置在中下等学生群体身上,指引他们进行深入、深刻的学习探究、思考分析活动,更多地将问题案例教学着力点落在中下等学生群体之中,使好、中、差三类学生群体都能掌握一定的解题技能,实现全体学生在案例讲解中整体进步.
在该问题教学中,教师采用“生探究,教师导”的教学方式,先按照“同组异质,异组同质”原则,组成学习小组开展问题案例探析活动.学生小组探析问题条件认为,该问题是考查学生运用平行四边形性质的能力.小组探析问题要求及问题条件后认为,第一小题要证明四边形AC=EF,需要通过找到符合△ABC≌△EFB的条件.第二小题要证明四边形ADFE是平行四边形,可以利用等边三角形的性质以及平行四边形的判定内容进行解答.教师在引导学生探析解题思路时,有意识地要求中下等学生进行阐述讲解活动,教师进行必要的指导,中下等学生群体得出该类型解题思路是:运用数形结合思想,找寻并构建等量关系,进行等量替换.全体学生,特别是中下等学生在教师针对性、整体性地讲解和引导下,对问题解答方法有了清晰、深刻的认识和掌握.同时,又为他们提供实践探究、思考分析的时机,促进不同类型学生群体整体进步和全面发展.
三、组织面向全体学生的评讲活动,使不同学生群体有不同的学习收获
学生学习活动过程及学习表现需要进行实时的指导和评价.教师在阶段性教学活动中,经常会对学生学习活动过程及表现,运用教学评价手段进行客观、公正、全面的评判和指点,以此推进学习活动进程,促进学习习惯养成.初中数学教师在开展评价教学活动中,就可以将整体性教学策略运用其中,针对学生的学习表现、解决问题的过程及方法,引导各类型学生群体组成评价辨析小组,在组内探究、分析、讨论的基础上,让不同类型的学生都能产生认知观点和见解.同时,鼓励中下等学生积极表达自己的观点,运用数学语言阐述对某学生学习活动表现、解题过程方法等方面的感受和观点,引导更多的学生个体参与评析辨析活动,促进评价活动深入开展,教学活动深入推进.
(责任编辑黄桂坚)