APP下载

“倒数的认识”教学设计

2014-10-11陆李华

云南教育·小学教师 2014年7期
关键词:假分数整数倒数

陆李华

教材简析:

“倒数的认识”是分数乘法单元的最后一节,它既是分数乘法计算的后继内容,又是学习分数除法的先决条件,具有承上启下的作用。这部分内容主要包括两部分知识:一是理解倒数的意义;二是掌握求一个数的倒数的方法。

教学过程:

一、忆“数”引新,揭题认标

师:同学们,我们每天都要和一个老朋友打交道,它就是“数”(板书:数)。大家回忆一下,我们都认识哪些数?

生:整数、小数和分数。

师:你们能分别举些例子吗?

(学生随意地说数,教师有选择地进行板书)

师:今天我们要学习一个新的知识——倒数。它和我们以前认识的这些数有什么不同?什么是倒数?怎么求一个数的倒数?

板书:不同?是什么?怎么求?

【设计意图】以“数”为引子,引导学生回忆以前认识的数,作用有两点:一是便于和倒数作比较;二是可作为求各种类型的倒数的素材。随后一连抛出三个问题:倒数与这些数有什么不同?什么是倒数?怎么求一个数的倒数?清晰到位的学习目标的呈现,使学生产生积极的学习心向。

二、自主学习,建构新知

师:让我们带着这3个问题展开自学,看一下学习单。

学习单

认真阅读教材,思考下列问题:

1.圈一圈。仔细读一读倒数的意义。你觉得哪个词特别重要?把它圈出来。

2.说一说。和互为倒数,还可以怎么说?

3.想一想。观察例题中互为倒数的两个数,你有什么发现?

4.写一写。试着写出和的倒数。

学生围绕学习单自主学习。

师:下面老师检查一下大家自学的情况。出示:

师:你同意他的说法吗?

生:他说的不对,必须乘积是1的两个数才互为倒数。

教师相机在“乘积”下面加着重号,同时板书:( )×( )=1

师:听了大家的建议,他改了一下,出示:

因为×=1,所以和互为倒数。

师:现在对吗?

生:对了!

师:和互为倒数,这句话怎么理解?

生:的倒数是,的倒数是。

师:哦!这就像我和你互为朋友,还可以怎么说?

生:我是你的朋友,你是我的朋友。

师:对!都表示一种相互之间的关系。(板书:关系)

师:下面我们来探讨“怎么求一个分数的倒数?”看一个具体的例子:的倒数是多少?

生:。

师:我们一起来验证一下。和的乘积是不是1?

老师发现有同学中间用“=”连接,你们觉得对吗?

生:不可以,是个真分数,是个假分数,怎么可能相等呢?

师:对!为了方便起见,我们可以用“→”表示的倒数是。

师:的倒数是多少?

生(齐):。

师:好!现在老师给大家一组数,你能很快说出它们的倒数吗?

(学生开火车口答)

师:说得这么快,有窍门吗?

生:太简单了,只要把分子、分母调换一下位置。

【设计意图】学习单主要围绕两个方面进行设计:一是倒数意义的理解;二是通过观察,发现求一个分数的倒数的方法。自学后的交流引导学生更进一步、更深层次地探讨,明确两个数互为倒数的先决条件必须是“乘积是1”,再者理解“互为”倒数的两个数是相互依存的关系,使学生对倒数意义的理解更为清晰、明朗。

三、共同探究,深化认知

1.研究整数、小数的倒数。

师:好!真分数和假分数已经研究了,那整数、小数,它们的倒数怎么求呢?

(教师在黑板上从学生举的例题中分别挑一个数:10、0.2)

师:先独立思考,怎么求这两个数的倒数?

(学生独立研究)

师:下面小组里再商量一下,还可以再举一些例子,验证你们的想法。

(小组内交流想法)

师:哪个小组来汇报?

生1:我们组研究了整数,想到了两种方法。我来说第一种:10=,的倒数是。

师:能把新知转化成我们刚刚研究过的分数的形式,再去思考,很会学习!

生2:我们还想到了1÷10=。

师:大家能看明白吗?

生3:我知道,因为要求10的倒数,就想10×( )=1,即用1÷10=。

师:学习数学,就要善于从不同的角度去思考,你们小组很棒!

师:接下去哪组来汇报小数?

生1:我们组认为小数可以转化成分数,0.2=,的倒数是5。

生2:太麻烦了,可以直接用1÷0.2=5。

师:大家同意吗?

生:同意。

师:那我再给大家一个数:0.3,试着求它的倒数。

(生一致都用转化成分数的方法)

师:咦?怎么都不用第二种方法啦?

生:因为1除以0.3,除不尽。

师:看来这种方法有局限性,所以我们要学会灵活运用各种方法。

【设计意图】考虑到本课内容相对简单,同时为了满足不同层次学生的需要,把求倒数的范围从“分数”延伸至“整数、小数”,以独立思考与合作交流相结合,不断扩展认知,深化认识。

2.及时练习中探讨1和0的倒数。

师:好!掌握了方法,咱们来看一组数:25 0.9 1 0

(部分学生开始埋头写)

师:别急着动笔,咱们先来说。说说你最喜欢求哪个数的倒数,最不喜欢求哪个数的倒数。

生1:我最喜欢求的倒数,它的倒数就是。

生2:我最喜欢求1的倒数,它的倒数是1。

师:哦?你是怎么想的?

生2:因为1×1=1,所以1的倒数就是1。

(教师相机板书)

生3:我不喜欢求0的倒数,感觉好像没有。

生4:我觉得0的倒数还是0。

师:0到底有没有倒数呢?你有办法证明你的结论吗?

(思考片刻后……)

生1:因为0和任何数相乘都得0,不可能等于1。所以0没有倒数。

师:从倒数的意义去思考,很有说服力。

生2:我认为0是整数,所以0=,的倒数是,分母为0的时候,没有意义。

师:用求倒数的方法也证明了0没有倒数。

(教师相机板书)

【设计意图】求1和0的倒数,没有刻意安排,而是巧妙地穿插在轻松的练习中,学生在自主选择时,发现1的倒数就是1,而对0是否有倒数产生疑惑,在此基础上组织学生探讨,顺应了学生的学习需要,可谓水到渠成。

3.回顾反思,交流总结。

师:学到这儿,咱们回头看看学习和研究的过程,一开始的三个问题,心中都有答案了吗?同桌互相说说。

师:找到答案了吗?还有疑问吗?

(学生交流分享)

【设计意图】此环节很好地呼应了一开始提出的三个问题,通过回顾,不仅梳理了知识,完善了认知,同时培养了学生的元认知意识,也使学生体验到数学学习的成功感。

四、巩固练习,拓展延伸

1.将互为倒数的两个数用线连起来。

100

8 4

0.25

2.我来当小法官。

(1)a和b互为倒数,所以a×b=1。( )

(2)因为×=1,所以是倒数,也是倒数。

( )

(3)一个数的倒数总比这个数小。( )

(4)9的倒数是。( )

(5)0.49的倒数是0.94。( )

3.先观察下面每组数有什么共同特点,再看看它们的倒数有什么共同点。

(1)

(2)

(3) 4 9 15

(4)

引导学生发现规律:

(1)真分数的倒数都是大于1的假分数。

(2)大于1的假分数的倒数都是真分数。

(3)几分之一的倒数都是整数。

(4)非0自然数的倒数都是几分之一。

4.拓展延伸。

师:其实倒数的一些特点,还可以通过图像清楚地表示出来。

如果用列所在的位置表示原来的数,行所在的位置表示它的倒数。我们取一些特殊的点。把这些点连成一条线,就形成了这样一个倒数的图像。

师:仔细看看,从图中你能什么发现?

生:我发现当一个数越来越大,它的倒数就越来越小。

师:那反过来说呢?

生:当一个数越来越小,它的倒数就越来越大。

师:想象一下,这时候会形成怎样的图像?

(学生用手势表示图像的大致走势)

(出示另外半段图像)

师:和你想的一样吗?

生:一样。

师:继续看,你能从图像上读出“0没有倒数”吗?

生1:倒数的图像没有经过0这个点。

生2:我看到围成的每个小长方形的面积都是1,如果有一条边是0的话,就不可能组成长方形了。

师:真会观察,相信大家现在对倒数又有了更深的理解。

【设计意图】通过观察,引导学生发现:一个数越大,它的倒数就越小,一个数越小,它的倒数就越大。同时,从图像中再次感受到0没有倒数,使学生对倒数获得更为丰富的理解。

◇责任编辑:张 莹◇

生1:我最喜欢求的倒数,它的倒数就是。

生2:我最喜欢求1的倒数,它的倒数是1。

师:哦?你是怎么想的?

生2:因为1×1=1,所以1的倒数就是1。

(教师相机板书)

生3:我不喜欢求0的倒数,感觉好像没有。

生4:我觉得0的倒数还是0。

师:0到底有没有倒数呢?你有办法证明你的结论吗?

(思考片刻后……)

生1:因为0和任何数相乘都得0,不可能等于1。所以0没有倒数。

师:从倒数的意义去思考,很有说服力。

生2:我认为0是整数,所以0=,的倒数是,分母为0的时候,没有意义。

师:用求倒数的方法也证明了0没有倒数。

(教师相机板书)

【设计意图】求1和0的倒数,没有刻意安排,而是巧妙地穿插在轻松的练习中,学生在自主选择时,发现1的倒数就是1,而对0是否有倒数产生疑惑,在此基础上组织学生探讨,顺应了学生的学习需要,可谓水到渠成。

3.回顾反思,交流总结。

师:学到这儿,咱们回头看看学习和研究的过程,一开始的三个问题,心中都有答案了吗?同桌互相说说。

师:找到答案了吗?还有疑问吗?

(学生交流分享)

【设计意图】此环节很好地呼应了一开始提出的三个问题,通过回顾,不仅梳理了知识,完善了认知,同时培养了学生的元认知意识,也使学生体验到数学学习的成功感。

四、巩固练习,拓展延伸

1.将互为倒数的两个数用线连起来。

100

8 4

0.25

2.我来当小法官。

(1)a和b互为倒数,所以a×b=1。( )

(2)因为×=1,所以是倒数,也是倒数。

( )

(3)一个数的倒数总比这个数小。( )

(4)9的倒数是。( )

(5)0.49的倒数是0.94。( )

3.先观察下面每组数有什么共同特点,再看看它们的倒数有什么共同点。

(1)

(2)

(3) 4 9 15

(4)

引导学生发现规律:

(1)真分数的倒数都是大于1的假分数。

(2)大于1的假分数的倒数都是真分数。

(3)几分之一的倒数都是整数。

(4)非0自然数的倒数都是几分之一。

4.拓展延伸。

师:其实倒数的一些特点,还可以通过图像清楚地表示出来。

如果用列所在的位置表示原来的数,行所在的位置表示它的倒数。我们取一些特殊的点。把这些点连成一条线,就形成了这样一个倒数的图像。

师:仔细看看,从图中你能什么发现?

生:我发现当一个数越来越大,它的倒数就越来越小。

师:那反过来说呢?

生:当一个数越来越小,它的倒数就越来越大。

师:想象一下,这时候会形成怎样的图像?

(学生用手势表示图像的大致走势)

(出示另外半段图像)

师:和你想的一样吗?

生:一样。

师:继续看,你能从图像上读出“0没有倒数”吗?

生1:倒数的图像没有经过0这个点。

生2:我看到围成的每个小长方形的面积都是1,如果有一条边是0的话,就不可能组成长方形了。

师:真会观察,相信大家现在对倒数又有了更深的理解。

【设计意图】通过观察,引导学生发现:一个数越大,它的倒数就越小,一个数越小,它的倒数就越大。同时,从图像中再次感受到0没有倒数,使学生对倒数获得更为丰富的理解。

◇责任编辑:张 莹◇

生1:我最喜欢求的倒数,它的倒数就是。

生2:我最喜欢求1的倒数,它的倒数是1。

师:哦?你是怎么想的?

生2:因为1×1=1,所以1的倒数就是1。

(教师相机板书)

生3:我不喜欢求0的倒数,感觉好像没有。

生4:我觉得0的倒数还是0。

师:0到底有没有倒数呢?你有办法证明你的结论吗?

(思考片刻后……)

生1:因为0和任何数相乘都得0,不可能等于1。所以0没有倒数。

师:从倒数的意义去思考,很有说服力。

生2:我认为0是整数,所以0=,的倒数是,分母为0的时候,没有意义。

师:用求倒数的方法也证明了0没有倒数。

(教师相机板书)

【设计意图】求1和0的倒数,没有刻意安排,而是巧妙地穿插在轻松的练习中,学生在自主选择时,发现1的倒数就是1,而对0是否有倒数产生疑惑,在此基础上组织学生探讨,顺应了学生的学习需要,可谓水到渠成。

3.回顾反思,交流总结。

师:学到这儿,咱们回头看看学习和研究的过程,一开始的三个问题,心中都有答案了吗?同桌互相说说。

师:找到答案了吗?还有疑问吗?

(学生交流分享)

【设计意图】此环节很好地呼应了一开始提出的三个问题,通过回顾,不仅梳理了知识,完善了认知,同时培养了学生的元认知意识,也使学生体验到数学学习的成功感。

四、巩固练习,拓展延伸

1.将互为倒数的两个数用线连起来。

100

8 4

0.25

2.我来当小法官。

(1)a和b互为倒数,所以a×b=1。( )

(2)因为×=1,所以是倒数,也是倒数。

( )

(3)一个数的倒数总比这个数小。( )

(4)9的倒数是。( )

(5)0.49的倒数是0.94。( )

3.先观察下面每组数有什么共同特点,再看看它们的倒数有什么共同点。

(1)

(2)

(3) 4 9 15

(4)

引导学生发现规律:

(1)真分数的倒数都是大于1的假分数。

(2)大于1的假分数的倒数都是真分数。

(3)几分之一的倒数都是整数。

(4)非0自然数的倒数都是几分之一。

4.拓展延伸。

师:其实倒数的一些特点,还可以通过图像清楚地表示出来。

如果用列所在的位置表示原来的数,行所在的位置表示它的倒数。我们取一些特殊的点。把这些点连成一条线,就形成了这样一个倒数的图像。

师:仔细看看,从图中你能什么发现?

生:我发现当一个数越来越大,它的倒数就越来越小。

师:那反过来说呢?

生:当一个数越来越小,它的倒数就越来越大。

师:想象一下,这时候会形成怎样的图像?

(学生用手势表示图像的大致走势)

(出示另外半段图像)

师:和你想的一样吗?

生:一样。

师:继续看,你能从图像上读出“0没有倒数”吗?

生1:倒数的图像没有经过0这个点。

生2:我看到围成的每个小长方形的面积都是1,如果有一条边是0的话,就不可能组成长方形了。

师:真会观察,相信大家现在对倒数又有了更深的理解。

【设计意图】通过观察,引导学生发现:一个数越大,它的倒数就越小,一个数越小,它的倒数就越大。同时,从图像中再次感受到0没有倒数,使学生对倒数获得更为丰富的理解。

◇责任编辑:张 莹◇

猜你喜欢

假分数整数倒数
如何跨越假分数的思维断层
这是流行病
分饼(真分数与假分数)
假分数变身
答案
动态演绎 品味激情
求整数解的策略