浅埋圆形基础竖向地基承载力极限分析上限解
2014-09-27陈飞练继建王海军
陈飞+练继建+王海军
文章编号:16742974(2014)06009207
收稿日期:20130514
基金项目:国家高技术研究发展计划(863计划)资助项目(2012AA051702);国家国际科技合作专项资助项目(2012DFA70490);天津市应用基础及前沿技术研究计划资助项目(青年基金项目)(12JCQNJC04000)
作者简介:陈 飞(1986-),男,河北邢台人,天津大学博士研究生
通讯联系人,Email: bookwhj@tju.edu.cn
摘 要:圆形基础是一种应用广泛的基础形式,而目前基础承载力研究主要集中在条形基础上,对圆形基础研究较少.针对现有圆形基础承载力求解方法中存在的问题,构建了多块体离散破坏模式,同时考虑土体自重、黏聚力及边载因素,求得竖向极限承载力的上限解表达式,并编制了最优化计算程序.将计算结果与已有的滑移线解、上限解、Hansen解以及工程实测资料进行广泛比较,证明该处计算浅埋圆形基础承载力的方法是更加准确合理的.然后根据计算结果分析了圆形基础地基滑裂面特性,发现由于同时考虑了土体重度,计算得到的地基滑裂面范围小于经典的对数螺旋滑裂面,滑裂面范围随内摩擦角的增大而增大,随重度增加而减小,随基础埋深的增大而增大.
关键词:承载力;多块体离散模式;相容速度场;最优化方法;临界滑裂面
中图分类号:TU470 文献标识码:A
Upperbound Limit Analysis of theVertical Bearing
Capacity of Circular Shallow Foundations
CHEN Fei, LIAN Jijian, WANG Haijun
(State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin Univ, Tianjin 300072, China)
Abstract: The circular foundation is one of the most widely used foundation types. However, little emphasis has been placed on the research of the bearing capacity for circular shallow foundations than strip footings. To solve this problem, an upperbound solution of the bearing capacity of circular shallow foundations was presented on the basis of the limit analysis by building a multiblock discrete model and taking soil weight, cohesion, and overload into account. Then, the present solutions have proved more accurate through comparisons with measured values found in references and calculation results using other methods. Additionally, analyses of the ground slide surface were carried out, which show that the scope of the slide surface searched is smaller than that of the classical logarithmic spiral surface, due to the weight of the soil. The scope of the slide surface increases with the increase of internal friction angle and embedded depth, but decreases with the increase of the unit weight of soil.
Key words:bearing capacity; multiblock failure mechanism; compatible velocity field; optimization; critical slide surface
圆形基础是比较常见的一种基础形式,在工程界应用颇为广泛,尤其在近年来经常被用作新型结构的基础[1].目前承载力问题研究多集中在条形基础上[2-4],对于圆形基础,目前仍在均匀、无重量条件下推导出的Prandtl解基础上,引入各种经验修正系数,如Terzaghi, Hanson, Vesic等建议的三项叠加法.这些修正方法缺乏严格的理论依据,且计算结果往往偏差较大[5],给圆形基础的设计和校核等带来不便,因此非常有必要对圆形基础竖向承载力进行研究.
目前地基承载力计算研究的主要方法有极限平衡法[6]、滑移线方法[7]、极限分析法[8]等.极限分析法是以塑性理论上下限定理求解极限荷载的一种分析方法,Chen[9]在上下限定理基础上建立了土体稳定分析的一般方法,该方法具有严格的理论基础,且可以避开分析复杂的应力和应变随外荷载如何变化,只需求出最终达到塑形极限状态时所对应的破坏荷载.Donald和Chen[10]提出了建立在对土条进行斜分条的塑性力学上限解法,并使用最优化方法来求解临界破坏模式,该方法在边坡稳定分析[10]和挡土墙土压力[11]等领域已有较多成功的应用,逐渐成为一种统一的、实用的土体稳定数值解法.近年来该方法也逐渐用于求解基础承载力,如Soubra[8]使用斜条分法得到了条形基础的承载力系数,计算结果优于传统的三项叠加法;Lyamin和Sloan[12]将上限解法和有限元方法结合,得到了一种新的计算基础承载力的数值方法;Shiau[13]、秦会来[14]、Huang[15]等将斜条分法用于分层地基,构建新的多块体离散模式,得到了双层地基条形基础的承载力上限解.综上所述,斜分土条上限解法在基础承载力领域的研究大都集中在条形基础,至于浅埋圆形基础,目前相关研究较少.李亮[16]、张国祥[17]等选用对数螺旋面作为滑裂面,采取上限法求解了圆形基础承载力,但对数螺线滑裂面是在无重土假设下得到的,当考虑土重因素时,无法获得理论解[2].
针对上述研究现状,本文将斜分土条法应用到浅埋圆形基础承载力的极限分析中,同时考虑土体自重、黏聚力及边载因素,推导了竖向承载力的上限解表达式,并编写最优化计算程序,得到了更加准确合理的圆形基础承载力上限解和地基滑裂面,分析了滑裂面性质及影响因素.为了检验本文上限解计算结果,将计算结果与目前已有的滑移线解、上限解、Hansen解以及工程实测资料进行了比较.
1 圆形基础承载力上限分析
1.1 上限定理
对于一个处于极限状态的地基,假定在地基土体里存在一个塑性区,在这一塑性区和边界上,如果由于某一外荷载增量ΔT*导致一个塑性应变增量,就可以通过虚功率原理求解相应于这一塑性变形模式的外荷载T*.上限定理指出,在所有运动许可变形场所对应的极限荷载中,真实的荷载最小.若将滑动土体分成若干具有倾斜侧面的土条,假定沿条块底面和侧面土体均达到了极限平衡状态,根据虚功原理可以得到以下方程:
WV*+T*V*=∑ni=1Dli+∑ni=1Ddi. (1)
式中:W为塑性区的体积力;T*为相应于塑性变形模式的外荷载;V*为塑性速度;Dl为沿土条侧面的内能耗散率;Dd为沿土条底面的内能耗散率.
1.2 多块体离散模式
在上述定理的基础上,建立浅埋圆形基础多块体离散模式,如图1所示.地基破坏区域分为锥形主动破坏区ABC,以及由n个土条组成的辐射状剪切破坏区BCD.假定材料遵守摩尔库伦破坏准则和相关联的流动法则.在竖向外荷载作用下,锥形主动破坏区(ABC)以v0竖直向下运动,速度与基础相同.辐射状剪切破坏区(BCD)内的任一土条速度vi与滑动界面的夹角为φ,与相邻条块的相对速度为vi,i+1,并与该两条块的交界面的夹角也为φ.相邻条块的移动应保证条块之间不发生重叠或分离,由此便可以推求任一条块的运动速度vi和相邻两条块之间的相对速度vi,i+1:
vi=v0cos (θ-φ)sin (β1-2φ)∏i-1j=1sin (αj+βj-2φ)sin (βi+1-2φ),(2)
vi,i+1=v0cos (θ-φ)sin (β1-2φ)sin (αi+βi-βi+1)sin (βi+1-2φ)×
∏i-1j=1sin (αj+βj-2φ)sin (βi+1-2φ).(3)
图1 地基多块体离散模式
Fig.1 Section view of multiblock failure mechanism
1.3 功率计算与上限分析
内能耗散即速度间断面上的能量耗散,外功率包括重力做功功率、基础周围负荷做功功率和极限荷载做功功率.
假设基础直径为D,取土体微元进行分析,如图2所示,根据几何关系可以得到以下关系式:
li=D2cos θ∏i-1j=1sin βjsin (αj+βj),(4)
di=D2cos θsin αisin (αi+βi)∏i-1j=1sin βjsin (αj+βj), (5)
ri=D2+13lisin θ+∑i-1j=1αj-π2+li+1sin θ+∑ij=1αj-π2.(6)
式中:li为条块径向长度;di为条块底边长度;ri 为条块重心位置.
图2相容速度矢量关系
Fig.2 Compatible velocity field
按照微元体计算功率并积分后可得:
1)锥体重力做功功率:
ΔWABC=18πγD3f1(θ,αi,βi)v0,(7)
f1=13tan θ.(8)
式中:q, c, γ分别为地基土的边载、黏聚力和容重;θ为主动破坏区锥体顶角;αi和βi 为土条三角形内角.
2)条块区重力做功功率:
∑ni=1ΔWi=18πγD3f2(θ,αi,βi)v0, (9)
f2=
∑ni=1cos (θ-φ)sin (β1-2φ)sin αisin βicos 2θsin (αi+βi)×
sin (βi-θ-φ-∑i-1j=1αj)∏i-1j=1sin 2βjsin 2(αj+βj)×
∏i-1j=1sin (αj+βj-2φ)sin (βi+1-2φ)×
1+13cos θsin (θ+∑i-1j=1αj-π2)∏i-1j=1sin βjsin (αj+βj)+13cos θsin (θ+∑ij=1αj-π2)∏ij=1sin βjsin (αj+βj).(10)
3)基础周围边载做功功率,假设基础埋深为H,则边载q=γH,边载做功功率:
ΔWq=14πD2qf3(θ,αi,βi)v0,(11)
f3=cos (θ-φ)sin (β1-2φ)sin (βi-θ-φ-∑i-1j=1αj)×
2cos θ∏nj=1sin βjsin (αj+βj)+4×
∏n-1j=1sin (αj+βj-2φ)sin (βi+1-2φ).(12)
4)竖向外力做功功率:
ΔWpu=Pvv0. (13)
式中:Pv为基础所受外力.
5)能量耗散率:
a. 沿锥侧面:
ΔDABC=14πD2cf4(θ,αi,βi)v0,(14)
f4=sin θcos φcos (θ-φ)sin (β1-2φ). (15)
式中:ΔD为斜条块底面或侧面的内能耗散.
b. 沿条块底面总耗散率:
∑ni=1ΔDdi=14πD2cf5(θ,αi,βi)v0,(16)
f5=
∑ni=1sec θcos φcos (θ-φ)sin (β1-2φ)×
sin αisin αi+βi•∏i-1j=1sin βisin αi+βi×
∏i-1j=1sin αj+βi-2φsin βj+1-2φ×
2+1cos θsin θ+∑i-1j=1αj-π2•∏i-1j=1sin βisin αi+βi+1cos θsin θ+∑ij=1αj-π2•∏ij=1sin βisin αi+βi. (17)
c. 沿条块侧面总耗散率:
∑ni=2ΔDli=14πD2cf6(θ,αi,βi)v0,(18)
f6=
∑ni=1sec θcos φcos (θ-φ)sin (β1-2φ)sin αi-1+βi-1-βisin βi-2φ×
∏i-1j=1sin βisin αi+βi•∏i-2j=1sin αj+βi-2φsin βj+1-2φ×
2+1cos θsin θ+∑i-1j=1αj-π2•∏i-1j=1sin βisin αi+βi. (19)
在竖向荷载作用下,两相邻条块之间接触面作用力方向无相对速度分量,条块前后表面无能量损失,故总的能量耗散率为式(14)、式(16)和式(18)之和:
∑ΔD=ΔDABC+∑ni=1ΔDdi+∑ni=2ΔDli. (20)
由上限定理可知,内能消散率等于外力的总功率,可建立等式经化简后如下:
Pv14πD2=
12γD-f1(θ,αi,βi)-f2(θ,αi,βi)+
cf4(θ,αi,βi)+f5(θ,αi,βi)+f6(θ,αi,βi)+
q-f3(θ,αi,βi) .(21)
2 上限解的计算与检验
2.1确定临界状态的数值分析方法
由式(21)可以看出,极限承载力pu是变量θ, αi和βi的函数,变量数目为2n+1.根据上限定理,在所有的机动容许的塑性变形位移速率场相对应的荷载中,极限荷载为最小.因此求解极限荷载即为寻找使得pu取得最小值时的变量值(θ, αi, βi),最优变量值构成的破坏面即为临界滑裂面,如图3所示.故上述问题可以归结为,对于一个具有2n+1个自变量ZT的目标函数pu,寻找使pu获得最小值的自变量[见式(22)],属于多变量非线性规划问题.
pu=f(θ,α1,α2,…,αn,β1,β2,…,βn),
ZT=θ,α1,α2,…,αn,β1,β2,…,βnT. (22)
非线性规划中的最优化方法为解决此类问题提供了强有力的手段.目前已有许多十分成熟的计算方法,如单行法、模式搜索法、随机搜索法、遗传算法等,都可以较好地解决最小值分析问题,近几年实际应用表明,采用单行法等直接搜索法可能更为有效[2].
图3 搜索临界滑裂面(轴对称示意图)
Fig.3 Search of critical slip surface (axisymmetric diagram)
本文采用Matlab编程进行最优化计算,选用单形法寻优,在循环搜索过程中,通过自变量θ,αi和βi反复迭代、扩充和收缩,使单形不断更新、逼近极值点,逐渐由滑裂面1向滑裂面2逼近,变量θ,αi和βi逐渐过渡到使目标函数最小的新数值θ′,αi′和βi′.
2.2 上限解与滑移线解比较
首先以承载力系数Nq为例,对计算方法和结果进行验证.Bolton和Lau[7]针对圆形浅埋基础利用滑移线法进行计算,得到圆形基础的承载力系数Nq,计算结果被广泛引用.滑移线法从构造应力场出发,虽与上限解属同一理论体系,但由于其不能证明构造的静力许可应力场在全局范围内适用,滑移线解的上下限性质不明确.令c=0, γ=0,代入式(21),计算结果即为对于圆形浅埋基础普遍适用的承载力系数Nq.划分条块数量越多,计算结果无疑更加准确,在计算时取一系列不同的条块数量(n=1, 2, 3, …)进行试算.将φ=30°时的Nq计算结果随条块数量变化关系绘于图4,从中可以看出,随着斜条块数目n的增加,Nq变化率逐渐降低,当条块数目n=10时,Nq变化率降至0.06%,计算结果已趋于稳定,满足精度要求.下面将本文上限法计算得到的Nq数值与Bolton和Lau[7]滑移线解进行比较,见图5.可以看出,本文上限解结果与滑移线法结果数值比较相近,并且两种方法反映的Nq变化规律也非常一致:Nq随内摩擦角增大而变大,并且增加幅度也逐渐增大.与滑移线解结果相比,上限解计算结果普遍偏小,因此是更加准确的,验证了本文计算方法的可靠性.
2.3 与工程实例资料和其他上限解对比分析
为进一步验证本文上限解,将其与文献[5]和
[16]中工程实例实测值、文献[16]中上限解和按照Hansen经典解计算结果进行比较,见表1.从表1中数据对比可以看出:本文上限解计算结果与实测值非常接近,误差基本控制在10%以内,尤其黏土土质上限解与实测值吻合良好,在粉土和砂土质中误差稍大,最大误差分别为12.3%和10.9%;上限解大都略大于实测值,这是符合上限定理的,原因在于它从构建一个处于塑性区和滑裂面上的位移场出发,本身即是从上限方向逼近真实解的.
与Hansen解和文献[16]上限解计算结果相比,可以看出本文计算结果更加接近实测值,Hansen解在软黏土中误差较大;本文上限解大都大于文献[16]上限解,这是由于文献[16]上限解选用的是Prandtl对数螺旋面作为滑裂面,计算时不考虑土体重度,因此得到的承载力的上限解偏小,而本文求解时同时考虑了土体自重、边载、黏聚力等因素,计算承载力时自动搜索到最危险的滑裂面,计算结果更加符合实际情况,同时这也验证了本文上限解搜索到的地基滑裂面的合理性.下面将对计算得到的地基滑裂面进行比较分析.
n
图4φ=30°时Nq随划分条块数目变化趋势
Fig.4Trends of Nq according to the
number of strips for φ=30°
/c
图5承载力系数Nq计算结果对比
Fig.5 Calculation result of Nq and comparison
表1 竖向极限承载力计算结果比较
Tab.1 Comparison between present ultimate bearing capacity and data in references
序号
土名
H
/ m
γ
/(kN•m-3)
c
/ kPa
φ
/(°)
实测值
/ kPa
本文上限
解/ kPa
相对误差:
(8)-(7)(7)×100
Hansen解
/kPa
文献[16]
上限解
/kPa
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
1
黏土
3.0
19.50
22.0
22.0
950
927.3
2.4
1 175.3
1 020.9
2
黏土
2.6
16.20
28.4
15.2
450
436.6
3.0
635.2
391.8
3
粉土
2.0
18.10
23.0
14.5
350
362.4
3.5
514.3
376.7
4
粉土
2.0
20.60
25.0
18.3
750
694.5
7.4
1145.5
626.3
5
粉土
1.6
20.80
9.8
24.8
850
872.3
2.6
616.3
769.3
6
砂土
2.2
20.40
5.1
32.4
2 500
2 693.6
7.7
2v795.2
2 218.9
7
砂土
2.5
22.40
5.3
36.2
4 500
4 742.5
5.4
5 574.7
4 812.3
8
砂土
1.8
21.20
7.7
26.4
1 000
1 109.1
10.9
1 374.8
949.5
9
粉土
0
17.06
9.8
20.0
220
245.6
11.7
218.8
—
10
粉土
0.3
17.06
9.8
20.0
257
279.8
8.9
306.9
—
11
粉土
0.4
17.70
12.8
22.0
410
447.3
9.1
493.0
—
12
粉土
0.5
17.65
14.7
25.0
550
617.7
12.3
1 187.6
—
3 地基滑裂面比较分析
3.1 滑裂面比较
为了研究上述地基滑裂面性质,比较其与文献[16]中使用的经典的对数螺线滑裂面的不同,特选取以下算例进行计算分析,基础直径D=5 m,埋深H=1.5 m,地基土重度为γ=20 kN/m3,内摩擦角φ=30°,黏聚力c=10 kPa.对上述基础进行上限计算分析,图6滑裂面1为计算得到的地基滑裂面形状的轴对称剖面图.由①锥形主动破坏区和②10个辐射状剪切破坏区构成.可以看出:破坏范围在90°左右,其中辐射状剪切破坏区依次由条块1~10构成,其中条块1~9的形状和大小及破坏模式非常接近,条块10的范围较大.与文献[16]中使用的对数螺线滑裂面(图6中滑裂面2)相比,可以看出本文地基滑裂面范围较小,这是由于计算时考虑了土体自重造成的;由于对数螺线滑裂面是在无重土的情况下得到的,所以其滑裂范围较大,直接应用于考虑土重时的圆形基础承载力计算是不合理的.本文计算得到的临界滑裂面同时考虑了q, c和γ的影响,并可看出临界滑裂面受土体自重影响较大.
图6 滑裂面图示与比较(轴对称剖面图)
Fig.6Critical slip surface and comparison with logarithmic
spiral surface (axisymmetric diagram)
3.2临界滑裂面影响因素
进一步研究地基土重度和内摩擦角对地基滑裂面的影响,对上述算例取多组不同的φ, γ, H,研究基础临界滑裂面的变化情况,计算得到的临界滑裂面的形状如图7,图8和图9所示.
图7 滑裂面形状随内摩擦角变化轴对称图
Fig.7 Axisymmetric diagram of critical slip surface
with variation of the internal frictional angle
图8 滑裂面形状随重度变化轴对称剖面图
Fig.8 Axisymmetric diagram of critical slip surface
with variation of the unit weight of the foundation
图9 滑裂面形状随埋深变化轴对称剖面图
Fig.9 Axisymmetric diagram of critical slip surface
with variation of the depth of embedment
可以得到以下结论:
1)当D=5 m,H=1.5 m,γ=20 kN/m3,c=10 kPa时,取φ分别为20°,25°,30°,35°和40°,得到临界滑裂面如图7所示,可以看出临界滑裂面范围随内摩擦角的增大而扩大,①区锥形体顶角θ逐渐增大,②区滑裂范围向外向下延伸,同时引起承载力数值的增大.
2)当D=5 m,H=1.5 m,φ=30°,c=10 kPa时,取γ分别为0,5 kN/m3,10 kN/m3,15 kN/m3,20 kN/m3和25 kN/m3,得到临界滑裂面如图8所示,可以看出当地基土重度变大时,滑裂面范围变小变浅,①区锥形体顶角θ逐渐减小,②区滑裂范围收缩,这与3.1中的结论是一致的,即地基重度会减小滑裂面范围.
3)当D=5 m,γ=20 kN/m3,φ=30°,c=10 kPa时,取深径比H/D分别为0,0.1,0.2,0.3,0.4和0.5,得到临界滑裂面如图9所示,当基础埋深增大时,锥形体顶角随之增大,辐射区滑裂范围向外向下延伸,滑裂面范围变大.
4结 论
承载力问题是岩土工程的基本课题之一,目前研究主要集中在条形基础上,对圆形基础研究较少,这给圆形基础设计校核带来不便.基础承载力受到土性、边载、基础形状等多种因素影响,鉴于基础承载力问题的复杂性,采用极限分析法对浅埋圆形基础承载力进行分析求解,构建了多块体破坏模式协调的机动速度场,避开复杂的应力应变关系,可同时考虑土体自重、黏聚力及边载因素,得到了圆形基础竖向极限承载力的上限解,并通过计算分析得出以下结论:
1)本文上限解与实测值以及多种计算方法得到的结果进行了广泛比较,与文献资料中实测结果对比,发现二者非常接近,并且本文计算结果比已有上限解、滑移线解和Hansen解更准确,说明了本文计算方法的合理性和准确性.
2)采用本文计算方法得到了圆形基础地基滑裂面,并与其他作者使用的经典的对数螺旋滑裂面进行比较,发现本文计算得到的地基滑裂面范围较小较浅.这是由于本文采取多块体离散模式,计算时同时考虑了地基土重度、黏聚力和边载因素,地基土重度使得滑裂面范围变小,更加符合实际情况.
3)较全面地讨论了地基主要土质参数对地基滑裂面的影响,发现临界滑裂面随内摩擦角的增大而增大,随重度增加而减小,随埋深的增大而增大.
参考文献
[1] LIAN Jijian, SUN Liqiang, ZHANG Jinfeng, et al. Bearing capacity and technical advantages of composite bucket foundation of offshore wind turbines[J]. Transactions of Tianjin University, 2011, 17(2): 132-137.
[2] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 323-365.
LI Guangxin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004: 323-365. (In Chinese)
[3] 韩冬冬, 贾敏才, 刘开富, 等. 条形基础极限承载力数值分析[J]. 岩土力学, 2007, 28(10): 2209-2214.
HAN Dongdong, JIA Mincai, LIU Kaifu, et al. Numerical analysis of bearing capacity of a foundation under strip footing[J]. Rock and Soil Mechanics, 2007, 28(10): 2209-2214. (In Chinese)
[4] 陈祖煜. 土力学经典问题的极限分析上、下限解[J].岩土工程学报, 2002, 24(1): 1-11.
CHEN Zuyu. Limit analysis for the classic problem of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (In Chinese)
[5] 蒋益平, 熊巨华. 方形和圆形基础地基极限承载力分析[J].岩土力学, 2005, 26(12): 1991-1995.
JIANG Yiping, XIONG Juhua. Analysis of ultimate bearing capacity of square and circular foundations[J]. Rock and Soil Mechanics, 2005, 26(12): 1991-1995. (In Chinese)
[6] 陈昌富, 唐仁华, 唐谚哲. 临近斜坡地基承载力计算新方法[J]. 湖南大学学报:自然科学版, 2008, 35(4): 1-6.
CHEN Changfu, TANG Renhua, TANG Yanzhe. A new calculation method for the seismic bearing capacity of shallow strip footings close to slope[J]. Journal of Hunan University: Natural Sciences, 2008, 35(4): 1-6. (In Chinese)
[7] BOLTON M D, LAU C K. Vertical bearing capacity factors for circular and strip footings on MohrCoulomb soil[J]. Canadian Geotechnical Journal, 1993, 30(4): 1024-1033.
[8] SOUBRA A H. Upperbound solutions for bearing capacity of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 28(2): 59-68.
[9] CHEN W F. Limit analysis and soil plasticity[M]. New York: Elsevier Scientific Publishing Co, 1975:47-99.
[10]DONALD I B, CHEN Z. Slope stability analysis by the upper bound approach:fundamentals andmethods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-862.
[11]SOUBRA A H, REGENASS P. Threedimensional passive earth pressures by kinematical approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(11): 969-978.
[12]LYAMIN A V, SLOAN S W. Upper bound limit analysis using linear finite elements and nonlinear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 181-216.
[13]SHIAU J S, LYAMIN A V, SLOAN S W. Bearing capacity of a sand layer on clay by finite element analysis[J]. Canadian Geotechnical Journal, 2003, 40(5):900-915.
[14]秦会来, 黄茂松. 双层地基极限承载力的极限分析上限法[J]. 岩土工程学报, 2008, 30(4): 611-616.
QIN Huilai, HUANG Maosong. Upperbound method for calculation bearing capacity of strip footings on twolayer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 611-616. (In Chinese)
[15]HUANG M S, QIN H L. Upperbound multirigidblock solutions for bearing capacity of twolayered soils[J]. Computers and Geotechnics, 2009, 36: 525-529.
[16]李亮, 杨小礼. 圆形浅基础地基承载力极限分析的上限解析解[J]. 铁道学报, 2001, 23(1): 94-97.
LI Liang, YANG Xiaoli. Analytical solution of bearing capacity of circular shallow foundations using upperbound theorem of limit analysis[J]. Journal of the China Railway Society, 2001, 23(1): 94-97. (In Chinese)
[17]张国祥, 付江山. 基于极限分析的圆形浅基础地基承载力上限解[J]. 岩土力学, 2010, 31(12): 3850-3854.
ZHANG Guoxiang, FU Jiangshan. Upper bound solution for bearing capacity of circular shallow foundation based on limit analysis[J]. Rock and Soil Mechanics, 2010, 31(12): 3850-3854. (In Chinese)
参考文献
[1] LIAN Jijian, SUN Liqiang, ZHANG Jinfeng, et al. Bearing capacity and technical advantages of composite bucket foundation of offshore wind turbines[J]. Transactions of Tianjin University, 2011, 17(2): 132-137.
[2] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 323-365.
LI Guangxin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004: 323-365. (In Chinese)
[3] 韩冬冬, 贾敏才, 刘开富, 等. 条形基础极限承载力数值分析[J]. 岩土力学, 2007, 28(10): 2209-2214.
HAN Dongdong, JIA Mincai, LIU Kaifu, et al. Numerical analysis of bearing capacity of a foundation under strip footing[J]. Rock and Soil Mechanics, 2007, 28(10): 2209-2214. (In Chinese)
[4] 陈祖煜. 土力学经典问题的极限分析上、下限解[J].岩土工程学报, 2002, 24(1): 1-11.
CHEN Zuyu. Limit analysis for the classic problem of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (In Chinese)
[5] 蒋益平, 熊巨华. 方形和圆形基础地基极限承载力分析[J].岩土力学, 2005, 26(12): 1991-1995.
JIANG Yiping, XIONG Juhua. Analysis of ultimate bearing capacity of square and circular foundations[J]. Rock and Soil Mechanics, 2005, 26(12): 1991-1995. (In Chinese)
[6] 陈昌富, 唐仁华, 唐谚哲. 临近斜坡地基承载力计算新方法[J]. 湖南大学学报:自然科学版, 2008, 35(4): 1-6.
CHEN Changfu, TANG Renhua, TANG Yanzhe. A new calculation method for the seismic bearing capacity of shallow strip footings close to slope[J]. Journal of Hunan University: Natural Sciences, 2008, 35(4): 1-6. (In Chinese)
[7] BOLTON M D, LAU C K. Vertical bearing capacity factors for circular and strip footings on MohrCoulomb soil[J]. Canadian Geotechnical Journal, 1993, 30(4): 1024-1033.
[8] SOUBRA A H. Upperbound solutions for bearing capacity of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 28(2): 59-68.
[9] CHEN W F. Limit analysis and soil plasticity[M]. New York: Elsevier Scientific Publishing Co, 1975:47-99.
[10]DONALD I B, CHEN Z. Slope stability analysis by the upper bound approach:fundamentals andmethods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-862.
[11]SOUBRA A H, REGENASS P. Threedimensional passive earth pressures by kinematical approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(11): 969-978.
[12]LYAMIN A V, SLOAN S W. Upper bound limit analysis using linear finite elements and nonlinear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 181-216.
[13]SHIAU J S, LYAMIN A V, SLOAN S W. Bearing capacity of a sand layer on clay by finite element analysis[J]. Canadian Geotechnical Journal, 2003, 40(5):900-915.
[14]秦会来, 黄茂松. 双层地基极限承载力的极限分析上限法[J]. 岩土工程学报, 2008, 30(4): 611-616.
QIN Huilai, HUANG Maosong. Upperbound method for calculation bearing capacity of strip footings on twolayer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 611-616. (In Chinese)
[15]HUANG M S, QIN H L. Upperbound multirigidblock solutions for bearing capacity of twolayered soils[J]. Computers and Geotechnics, 2009, 36: 525-529.
[16]李亮, 杨小礼. 圆形浅基础地基承载力极限分析的上限解析解[J]. 铁道学报, 2001, 23(1): 94-97.
LI Liang, YANG Xiaoli. Analytical solution of bearing capacity of circular shallow foundations using upperbound theorem of limit analysis[J]. Journal of the China Railway Society, 2001, 23(1): 94-97. (In Chinese)
[17]张国祥, 付江山. 基于极限分析的圆形浅基础地基承载力上限解[J]. 岩土力学, 2010, 31(12): 3850-3854.
ZHANG Guoxiang, FU Jiangshan. Upper bound solution for bearing capacity of circular shallow foundation based on limit analysis[J]. Rock and Soil Mechanics, 2010, 31(12): 3850-3854. (In Chinese)
参考文献
[1] LIAN Jijian, SUN Liqiang, ZHANG Jinfeng, et al. Bearing capacity and technical advantages of composite bucket foundation of offshore wind turbines[J]. Transactions of Tianjin University, 2011, 17(2): 132-137.
[2] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 323-365.
LI Guangxin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004: 323-365. (In Chinese)
[3] 韩冬冬, 贾敏才, 刘开富, 等. 条形基础极限承载力数值分析[J]. 岩土力学, 2007, 28(10): 2209-2214.
HAN Dongdong, JIA Mincai, LIU Kaifu, et al. Numerical analysis of bearing capacity of a foundation under strip footing[J]. Rock and Soil Mechanics, 2007, 28(10): 2209-2214. (In Chinese)
[4] 陈祖煜. 土力学经典问题的极限分析上、下限解[J].岩土工程学报, 2002, 24(1): 1-11.
CHEN Zuyu. Limit analysis for the classic problem of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (In Chinese)
[5] 蒋益平, 熊巨华. 方形和圆形基础地基极限承载力分析[J].岩土力学, 2005, 26(12): 1991-1995.
JIANG Yiping, XIONG Juhua. Analysis of ultimate bearing capacity of square and circular foundations[J]. Rock and Soil Mechanics, 2005, 26(12): 1991-1995. (In Chinese)
[6] 陈昌富, 唐仁华, 唐谚哲. 临近斜坡地基承载力计算新方法[J]. 湖南大学学报:自然科学版, 2008, 35(4): 1-6.
CHEN Changfu, TANG Renhua, TANG Yanzhe. A new calculation method for the seismic bearing capacity of shallow strip footings close to slope[J]. Journal of Hunan University: Natural Sciences, 2008, 35(4): 1-6. (In Chinese)
[7] BOLTON M D, LAU C K. Vertical bearing capacity factors for circular and strip footings on MohrCoulomb soil[J]. Canadian Geotechnical Journal, 1993, 30(4): 1024-1033.
[8] SOUBRA A H. Upperbound solutions for bearing capacity of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 28(2): 59-68.
[9] CHEN W F. Limit analysis and soil plasticity[M]. New York: Elsevier Scientific Publishing Co, 1975:47-99.
[10]DONALD I B, CHEN Z. Slope stability analysis by the upper bound approach:fundamentals andmethods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-862.
[11]SOUBRA A H, REGENASS P. Threedimensional passive earth pressures by kinematical approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(11): 969-978.
[12]LYAMIN A V, SLOAN S W. Upper bound limit analysis using linear finite elements and nonlinear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 181-216.
[13]SHIAU J S, LYAMIN A V, SLOAN S W. Bearing capacity of a sand layer on clay by finite element analysis[J]. Canadian Geotechnical Journal, 2003, 40(5):900-915.
[14]秦会来, 黄茂松. 双层地基极限承载力的极限分析上限法[J]. 岩土工程学报, 2008, 30(4): 611-616.
QIN Huilai, HUANG Maosong. Upperbound method for calculation bearing capacity of strip footings on twolayer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 611-616. (In Chinese)
[15]HUANG M S, QIN H L. Upperbound multirigidblock solutions for bearing capacity of twolayered soils[J]. Computers and Geotechnics, 2009, 36: 525-529.
[16]李亮, 杨小礼. 圆形浅基础地基承载力极限分析的上限解析解[J]. 铁道学报, 2001, 23(1): 94-97.
LI Liang, YANG Xiaoli. Analytical solution of bearing capacity of circular shallow foundations using upperbound theorem of limit analysis[J]. Journal of the China Railway Society, 2001, 23(1): 94-97. (In Chinese)
[17]张国祥, 付江山. 基于极限分析的圆形浅基础地基承载力上限解[J]. 岩土力学, 2010, 31(12): 3850-3854.
ZHANG Guoxiang, FU Jiangshan. Upper bound solution for bearing capacity of circular shallow foundation based on limit analysis[J]. Rock and Soil Mechanics, 2010, 31(12): 3850-3854. (In Chinese)