Banach空间中H-η-单调算子的变分包含混合逼近点算法
2014-08-15王娴佟慧
王娴,佟慧
(河北大学 数学与计算机学院,河北 保定 071002)
1 预备知识
变分包含是经典变分不等式的一个重要推广,在许多领域(例如:物理学、最优控制、非线性规划、经济与工程学)中都有着广泛的应用.因此,近年来,变分问题被诸多学者研究.
Verma发展了Eckstein-Bertsekas的关于A-极大单调算子[1]和(A,η)-极大单调算子[2]的混合逼近点算法.这些结论推广了单值的极大单调算子,包含了文献[3]中在Hilbert空间中关于H-极大单调算子的结论.目前,关于(A,η)-极大单调算子的广义预解算法也已被介绍和研究.本文中,将文献[4]结果推广到了Banach空间,它和其他在Hilbert空间中讨论的结果不同,这样所得到的关于变分包含的结论就可以应用到Lp,Wm,p(Ω)空间中去.
设X是实的Banach空间,X*是其对偶空间,‖·‖表示X上的范数,〈·,·〉表示X和X*之间的配对,2X表示X的一切非空子集族.
广义对偶映射Jq(x):X→2X定义为
Jq(x)={f*∈X*:〈x,f*〉=‖x‖p,‖f*‖=‖x‖q-1},q>1.
特别地,J2为正规对偶映射.众所周知,Jq=‖x‖q-2J2,∀x∈X.若X*为严格凸的,则Jq(x)为单值的.
引理1[5]设X为一致光滑的实Banach空间,则X为q-一致光滑的当且仅当存在常数cq>0使得
‖x+y‖q≤‖x‖q+q〈y,Jq(x)〉+cq‖y‖q,∀x,y∈X.
(1)
定义1[6]设M:X→2X*为多值算子,H:X→X*,η:X×X→X为单值算子,
1)称X为单调的,如果〈x-y,u-v〉≥0,∀u,v∈X,x∈Mu,y∈Mv.
2)称M为η-单调的,如果〈x-y,η(u,v)〉≥0,∀u,v∈X,x∈Mu,y∈Mv.
3)称M为η-强单调的,如果存在某个常数r>0使得〈x-y,η(u,v)〉≥r‖u-v‖2,∀u,v∈X,x∈Mu,y∈Mv.
4)称M为m-松弛-η-单调的,如果存在某个常数m>0使得〈x-y,η(u,v)〉≥-m‖u-v‖2,∀u,v∈X,x∈Mu,y∈Mv.
5)称M为H-单调的,若M是单调的且对任何λ>0,(H+λM)X=X*.
6)称M为(H,η)-单调的,若M是η-单调的且对任何λ>0,(H+λM)X=X*.
7)称M为H-η-单调的,若M为m-松弛-η-单调的且对任何λ>0,(H+λM)X=X*.(在文献[4]和[11]中H-η-单调算子被称为(H,η)单调算子).
注1 在文献[7]中首先介绍了η-单调算子,H-单调算子和(H,η)-单调算子,[8]中又介绍了H-η-单调算子.显然,H-η-单调算子是(H,η)-单调算子的推广.
定义3[9-10]称算子T:X→X*关于H∘g为强增生的,如果存在某常数λ>0使得
(2)
2 主要结论
在定理1的基础上来讨论下面变分包含问题
f∈F(x,U(x))+M(g(x))
(3)
的解的迭代算法.其中x∈X,f,h∈X*,F:X×X→X*,g:X→X,U:X→X为3个单值算子,M:X→2X*为一个多值算子,关于它的非线性变分包含问题已在文献[11]中考虑.显然问题(3)包含了很多变分包含问题,见文献[10].
(4)
其中ρ>0为常数.
证明:由定理1直接得到.
定理2 设X*为q-一致光滑的Banach空间,η:X×X→X为τ-Lipschitz连续算子,g:X→X为γ-强增生且t-Lipschitz连续的.H:X→X*为(r,η)-强单调且s-Lipschitz连续算子,U:X→X为ξ-Lipschitz连续算子.设M:X→2X*为H-η-单调多值算子.设F:X×X→X*为一个算子,使得对任意(x,u)∈X×X,F(·,u)关于H∘g为强增生且σ-υ-Lipschitz连续的,F(x,·)为μ-Lipschitz连续的.对任意的给定的初值x0,构造如下序列{xk}:
xk+1=(1-αk)xk+αkyk,∀k>0,
(5)
yk满足
(6)
(7)
证明:由于g为γ-强增生的,故有
‖g(u)-g(v)‖‖u-v‖q-1=‖g(u)-g(v)‖‖Jq(u-v)‖q-1≥
〈g(u)-g(v),Jq(u-v)〉≥γ‖u-v‖q,
由上面的式子可知,g-1为单值算子且有
因此算法(5),(6)有意义.
由假设和(2)得到
‖Hg(xk)-Hg(x*)-ρk[F(xk,U(xk))-F(x*,U(xk))]‖q≤
(8)
[1-αk(1-θk)]‖xk-x*‖=dk‖xk-x*‖,
由xk+1=(1-αk)xk+αkyk,有xk+1-xk=αk(yk-xk),于是
故有
‖xk+1-x*‖≤‖zk+1-x*‖+‖xk+1-zk+1‖≤‖zk+1-x*‖+αkδk‖yk-xk‖≤
‖zk+1-x*‖+δk‖xk+1-xk‖≤
‖zk+1-x*‖+δk‖xk+1-x*‖+δk‖xk-x*‖,
(9)
注2 条件(7)的证明可见文献[10].
参 考 文 献:
[1] VERMA R U. A-monotonicity and its role in nonlinear variational inclusions[J]. Optimization Theory and Applications, 2006,129(3) :457-467.
[2] VERMA R U. Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J]. Applied Mathematics Letters, 2006,19: 1409-1413.
[3] FANG Yaping, HUANG Nanjing. H-monotone operators and system of variational inclusions[J]. Communications on Applications and Nonlinear Analysis, 2004,11(1):93-101.
[4] VERMA R U. A hybrid proximal point algorithm based on the (A,η)- maximal monotonicity framework[J]. Applied Mathematics Letters, 2008,21:142-147.
[5] XU H K. Inequalities in Banach spaces with applications[J]. Nonlinear Analysis, 1991,16(12):1127-1138.
[6] FANG Yaping, HUANG Nanjing. A new system of variational inclusions with monotone operators in Hilbert spaces[J]. Computers & Mathematics with Applications, 2005,49:365-374.
[7] HUANG Nanjing,FANG Yaping. Fixed point theorems and a new system of multivalued generalized order complementarity problems[J]. Applied Mathematics Letters, 2003,7:257-265.
[8] ZHANG Qingbang. Generalized implicit variational-like inclusion problems involvingG-η- monotone mappings[J]. Applied Mathematics Letters, 2007,20:216-221.
[9] FANG Yaping, HUANG Nanjing.H-Accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces[J]. Applied Mathematics Letters, 2004,17:647-653.
[10] HOU Jian , HE Xinfeng, HE Zhen. Iterative methods for solving a system of variational inclusions involvingH-η-monotone operators in Banach spaces[J]. Computers & Mathematics with Applications, 2008,55:1832-1841.
[11] VERMA R U. Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A,η)-monotone mappings[J]. Journal of Mathematical Analysis and Applications, 2008,337: 969-975.