APP下载

生长曲线模型的惩罚最小二乘估计

2014-08-12高采文朱晓琳曾林蕊

经济数学 2014年2期
关键词:参数估计标识码分类号

高采文 朱晓琳 曾林蕊

摘 要 主要考虑了生长曲线模型中的参数矩阵的估计. 首先基于Potthoff-Roy变换后的生长曲线模型, 采用不同的惩罚函数:Hard Thresholding函数, LASSO, ENET, 改进LASSO, SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型, 直接定义其惩罚最小二乘估计, 基于Nelder-Mead法给出了估计的数值解算法. 最后对提出的参数估计方法进行了数据模拟. 结果表明自适应LASSO在估计方面效果比较好.

关键词 惩罚最小二乘估计;Hard Thresholding函数;SCAD 惩罚函数;改进LASSO

中图分类号 O212.1 文献标识码 A

参考文献

[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.

[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.

[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.

[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.

[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.

[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.

[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.

[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.

[9] 刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报, 1994, 37(3):362-372.endprint

摘 要 主要考虑了生长曲线模型中的参数矩阵的估计. 首先基于Potthoff-Roy变换后的生长曲线模型, 采用不同的惩罚函数:Hard Thresholding函数, LASSO, ENET, 改进LASSO, SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型, 直接定义其惩罚最小二乘估计, 基于Nelder-Mead法给出了估计的数值解算法. 最后对提出的参数估计方法进行了数据模拟. 结果表明自适应LASSO在估计方面效果比较好.

关键词 惩罚最小二乘估计;Hard Thresholding函数;SCAD 惩罚函数;改进LASSO

中图分类号 O212.1 文献标识码 A

参考文献

[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.

[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.

[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.

[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.

[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.

[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.

[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.

[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.

[9] 刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报, 1994, 37(3):362-372.endprint

摘 要 主要考虑了生长曲线模型中的参数矩阵的估计. 首先基于Potthoff-Roy变换后的生长曲线模型, 采用不同的惩罚函数:Hard Thresholding函数, LASSO, ENET, 改进LASSO, SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型, 直接定义其惩罚最小二乘估计, 基于Nelder-Mead法给出了估计的数值解算法. 最后对提出的参数估计方法进行了数据模拟. 结果表明自适应LASSO在估计方面效果比较好.

关键词 惩罚最小二乘估计;Hard Thresholding函数;SCAD 惩罚函数;改进LASSO

中图分类号 O212.1 文献标识码 A

参考文献

[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.

[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.

[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.

[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.

[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.

[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.

[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.

[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.

[9] 刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报, 1994, 37(3):362-372.endprint

猜你喜欢

参数估计标识码分类号
基于新型DFrFT的LFM信号参数估计算法
Logistic回归模型的几乎无偏两参数估计
基于向前方程的平稳分布参数估计
基于竞争失效数据的Lindley分布参数估计
Process Mineralogy of a Low Grade Ag-Pb-Zn-CaF2 Sulphide Ore and Its Implications for Mineral Processing
Study on the Degradation and Synergistic/antagonistic Antioxidizing Mechanism of Phenolic/aminic Antioxidants and Their Combinations
A Comparative Study of HER2 Detection in Gastroscopic and Surgical Specimens of Gastric Carcinoma