生长曲线模型的惩罚最小二乘估计
2014-08-12高采文朱晓琳曾林蕊
高采文 朱晓琳 曾林蕊
摘 要 主要考虑了生长曲线模型中的参数矩阵的估计. 首先基于Potthoff-Roy变换后的生长曲线模型, 采用不同的惩罚函数:Hard Thresholding函数, LASSO, ENET, 改进LASSO, SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型, 直接定义其惩罚最小二乘估计, 基于Nelder-Mead法给出了估计的数值解算法. 最后对提出的参数估计方法进行了数据模拟. 结果表明自适应LASSO在估计方面效果比较好.
关键词 惩罚最小二乘估计;Hard Thresholding函数;SCAD 惩罚函数;改进LASSO
中图分类号 O212.1 文献标识码 A
参考文献
[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.
[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.
[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.
[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.
[9] 刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报, 1994, 37(3):362-372.endprint
摘 要 主要考虑了生长曲线模型中的参数矩阵的估计. 首先基于Potthoff-Roy变换后的生长曲线模型, 采用不同的惩罚函数:Hard Thresholding函数, LASSO, ENET, 改进LASSO, SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型, 直接定义其惩罚最小二乘估计, 基于Nelder-Mead法给出了估计的数值解算法. 最后对提出的参数估计方法进行了数据模拟. 结果表明自适应LASSO在估计方面效果比较好.
关键词 惩罚最小二乘估计;Hard Thresholding函数;SCAD 惩罚函数;改进LASSO
中图分类号 O212.1 文献标识码 A
参考文献
[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.
[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.
[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.
[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.
[9] 刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报, 1994, 37(3):362-372.endprint
摘 要 主要考虑了生长曲线模型中的参数矩阵的估计. 首先基于Potthoff-Roy变换后的生长曲线模型, 采用不同的惩罚函数:Hard Thresholding函数, LASSO, ENET, 改进LASSO, SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型, 直接定义其惩罚最小二乘估计, 基于Nelder-Mead法给出了估计的数值解算法. 最后对提出的参数估计方法进行了数据模拟. 结果表明自适应LASSO在估计方面效果比较好.
关键词 惩罚最小二乘估计;Hard Thresholding函数;SCAD 惩罚函数;改进LASSO
中图分类号 O212.1 文献标识码 A
参考文献
[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.
[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.
[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.
[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.
[9] 刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报, 1994, 37(3):362-372.endprint