厌氧氨氧化工艺的应用现状和问题
2014-07-19张正哲姬玉欣陈辉郭琼周煜璜吴聪慧金仁村
张正哲,姬玉欣,陈辉,郭琼,周煜璜,吴聪慧,金仁村
杭州师范大学 生命与环境科学学院,浙江 杭州 310036
综 述
厌氧氨氧化工艺的应用现状和问题
张正哲,姬玉欣,陈辉,郭琼,周煜璜,吴聪慧,金仁村
杭州师范大学 生命与环境科学学院,浙江 杭州 310036
张正哲, 姬玉欣, 陈辉, 等. 厌氧氨氧化工艺的应用现状和问题. 生物工程学报, 2014, 30(12): 1804–1816.
Zhang ZZ, Ji YX, Chen H, et al. Application and obstacles of ANAMMOX process. Chin J Biotech, 2014, 30(12): 1804–1816.
厌氧氨氧化 (Anaerobic ammonium oxidation, ANAMMOX) 工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。预计到2014年末,全球范围内的ANAMMOX工程将会超过100座。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程 (主要包括移动床生物膜,颗粒污泥和序批式反应器系统) 应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。
厌氧氨氧化工艺,废水生物脱氮,工程化应用,运行策略
厌氧氨氧化 (Anaerobic ammonium oxidation,ANAMMOX) 工艺,最初由荷兰Delft工业大学于20世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺[1]。它以20世纪90年代发现的ANAMMOX反应(1) 为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气[2],在理念和技术上大大突破了传统的生物脱氮工艺。ANAMMOX工艺具有脱氮效率高、运行费用低、占地空间小等优点[3-5],在污水处理中发展潜力巨大。目前该工艺在处理市政污泥液领域[5-7]已日趋成熟,位于荷兰鹿特丹Dokhaven污水厂的世界上首个生产性规模的ANAMMOX装置容积氮去除速率 (NRR) 更是高达9.5 kg N/(m3·d)。此外,ANAMMOX工艺在发酵工业废水[8-9]、垃圾渗滤液[10-11]、养殖废水[12-13]等高氨氮废水处理领域的推广也逐步开展,在世界各地的工程化应用也呈星火燎原之势。
NH4++1.32NO2–+0.066HCO3–+0.13H+→1.02N2+0.26NO3–+0.066CH2O0.5N0.15+2.03H2O (1)
本文介绍了不同形式的ANAMMOX工艺,通过比较其运行条件,并结合ANAMMOX工艺工程应用现状,总结了该工艺工程化应用面临的问题和解决对策,在此基础上对今后的研究和应用方向进行了展望。
1 ANAMMOX工艺及其衍生工艺
经过20多年的研究和发展,基于ANAMMOX反应开发出来的较成熟的工艺有SHARON (Single reactor for high activity ammonia removal over nitrite)-ANAMMOX工艺、全程自养脱氮 (Completely autotrophic nitrogen removal over nitrite, CANON) 工艺、限氧自养硝化反硝化 (Oxygen limited autotrophic nitrification and denitrification, OLAND) 工艺、反硝化氨氧化 (Denitrifying ammonium oxidation, DEAMOX) 工艺、好氧反氨化(Aerobic deammonification, DEMON) 工艺。近年来,研究人员仍在不断探索其他形式的ANAMMOX衍生工艺,譬如同步短程硝化、厌氧氨氧化、反硝化耦合 (Simultaneous partial nitrification, ANAMMOX and denitrification, SNAD) 工艺、单级厌氧氨氧化短程硝化脱氮(Single-stage nitrogen removal using ANAMMOX and partial nitritation, SNAP) 工艺等 (表1)。
目前,存在两种方法为ANAMMOX提供电子受体亚硝酸盐,一种是在一个独立的曝气反应器中产生而随后进入ANAMMOX反应器,另一种是在一个无O2或者微O2的ANAMMOX反应器中产生并立即参与ANAMMOX反应。据此,可将ANAMMOX工艺相应分为分体式 (两级系统) 和一体式 (单级系统) 两种,一体式包括CANON、OLAND、DEAMOX、DEMON、SNAP、SNAD等工艺,分体式主要是SHARON-ANAMMOX工艺。一体式工艺的基建成本低[14]、结构紧凑、装置运行和控制简单,并且其短程硝化产生的亚硝酸盐立即参与ANAMMOX反应,能有效避免因亚硝酸盐累积造成的抑制[4],另外单位体积脱氮速率高也是一体化工艺的优势。但是一体化工艺启动时间长,反应器内微生物间的生态关系复杂,经受负荷冲击时易失稳[15-16],并引发连锁反应,导致“雪崩”效应,系统受扰紊乱后恢复时间也长[17]。与一体式工艺相比,分体式工艺中的两反应器可单独进行灵活和稳定的调控[14,18],系统受扰后恢复时间短[17],ANAMMOX反应器进水具有相对稳定的氨氮和亚硝氮比例。其次由于短程硝化阶段能削减某些毒物和有机物,避免其直接进入ANAMMOX反应器,所以更适合处理含毒物和有机物的废水[19-20]。另外,处理高负荷含氮废水时,分体式工艺的高投资成本会通过较低的运营成本得以补偿[15]。因此,这两种工艺各有利弊,实际应用时需根据具体情况,做到“因水制宜,量水裁艺”。
2 ANAMMOX工艺的应用现状
图1 ANAMMOX工程化装置 (2014年的数据代表在建或者设计中的工程) 和涉及ANAMMOX主题科研文献的逐年发展 (Web of science,于4/8/2014访问)Fig. 1 Cumulative development of full-scale ANAMMOX installations (2014 represents known plants under design/construction) and scientific publications on the topic of ANAMMOX (Web of science, accessed on 4/8/2014).
在过去的10年里,ANAMMOX工程化应用逐渐兴起,正如图1所示,ANAMMOX工程化装置和研究文献呈逐年增长趋势。第一座工程化装置的诞生与ANAMMOX的发现和发展有短暂的滞后,由此可见中试和实验室研究对工程化应用具有积极的推动作用。预计到2014年末,全球范围内的ANAMMOX工程将会超过100座。表2列举了世界上一些具有代表性的ANAMMOX工程及其主要运行参数[44]。其中大部分工程坐落于欧洲,也正日益盛行于南美洲。为了更好地控制短程硝化反应,短程硝化-厌氧氨氧化 (Partial nitritation-ANAMMOX, PN-ANAMMOX) 装置大多采用两级系统或利用已有的短程硝化系统 (如SHARON反应器)。但随着工程化经验越来越丰富,重点开始转向单级系统。目前,工程化的装置主要包括移动床生物膜反应器[45](Moving bed biofilm reactor, MBBR)、颗粒污泥反应器[46]和序批式反应器(Sequencing batch reactor, SBR)[4,47],还有少数生物转盘 (Rotating biological contactors, RBC)[24]和活性污泥系统[48]。
DEMON是最为风靡的SBR系统,该工艺首先装配在奥地利Strass,采用自主设计的基于pH调控的进水控制系统,用来处理污泥压滤液[49]。利用水力旋流器可以分别调节适合氨氧化菌 (Ammonia-oxidizing bacteria, AOB) 和ANAMMOX菌 (Anaerobic ammonium oxidizing bacteria, AnAOB) 的泥龄 (Sludge retention time, SRT),并且可从接种污泥中分离出生长缓慢的AnAOB[50]。还能使小絮体中的亚硝酸氧化菌(Nitrite-oxidizing bacteria, NOB) 被洗出,使大聚集体中的AnAOB得以持留。另一种SBR技术是由瑞士联邦水生科学技术研究所开发的基于氨控制的PN-ANAMMOX工艺。该工艺最早装配在瑞士Zürich[4,51],在每个运行周期的开始阶段或者曝气阶段进水,进水流量受氨传感器调控,因此SBR运行周期长度不固定。氨信号也可由电导率信号替代,通过控制曝气量确保短程硝化和ANAMMOX同步进行,一般溶解氧(Dissolved oxygen, DO) 浓度控制在0.1 mg/L以下,通常情况下建议采用连续曝气,启动阶段或者污泥活性较低时采用间歇曝气。此外,一些PN-ANAMMOX设施采用其他调控策略,差异主要在于进水模式 (间歇或连续)、污泥存在形式 (悬浮或附着生长)、曝气控制方式。比如德国Ingolstadt污水厂的SBR采用间歇进水 (6 h周期内进水4次) 和间歇曝气 (6 min曝气/9 min停止)。但在德国Gütersloh污水厂的SBR周期为24 h,白天连续进水,进水量取决于污泥压滤液的产生量。当氨浓度达到上限时启动曝气,当pH或者氨浓度跌至下限时停止曝气,DO浓度控制在0.5 mg/L以下[44]。
一体式颗粒污泥反应器也应用于工业废水的自养脱氮工程。目前在我国建造了数座实际工程,主要在发酵行业 (包括酿酒、味精、酵母废水),其中通辽梅花味精废水Ⅰ期工程ANAMMOX反应器容积高达6 600 m3,是迄今世界上规模最大的ANAMMOX工程。
传统的生物膜技术也成功用于PN-ANAMMOX工艺。RBC是最早发现存有ANAMMOX反应的反应器之一[24,52-53],随后被Ghent大学成功应用于OLAND工艺中[7]。RBC的运营成本低,但工艺缺乏灵活性。目前,荷兰Sneek市有两座采用OLAND工艺处理厌氧消化厕所水的RBC装置,一座容积0.5 m3的装置服务于64人口当量,另一座容积6 m3服务于464人口当量[44]。通过调节转盘转速 (1−4 r/min)来实现工艺控制,确保DO浓度处于目标值(0.60−0.65 mg/L)。荷兰Hulst市也有利用RBC处理化肥生产废水的工程,通过在线监测氨来调控进水,调节转盘转速控制DO浓度。预计到2015年该工程的氮负荷可达150 kg N/d[44]。
2001年在德国Hattingen污水厂建造了一座生物膜PN-ANAMMOX工程,用于处理污泥压滤液。该工程DeAmmon工艺中MBBR系统的40%−50%由填料填充,并设有曝气装置和搅拌器[45,54]。2007年第二座采用DeAmmon工艺的MBBR装置在瑞典Himmerfjärden污水厂开始建造[55]。生物膜的理念还被应用在位于瑞典Malmö的ANITAMoxTM工艺设计中,该装置不仅用于处理污泥压滤液,还可为其他装置培养种子载体。在此基础上采用复合固定膜活性污泥装置还可将性能提高3−4倍[44]。
该复合装置持留的悬浮污泥具有90%的AOB,其负荷比单一的生物膜系统高。在PN-ANAMMOX工艺中也有悬浮污泥理念的应用。荷兰Colsen的新活性污泥 (New activated sludge,NAS) 系统即采用悬浮污泥法,包括好氧、厌氧、搅拌室,依赖于PN-ANAMMOX和硝化反硝化耦合作用来处理食品加工废水[48]。通过控制DO和SRT实现工艺调控。德国TERRANA系统与复合固定膜活性污泥法原理相似,起初在SBR和分体式活性污泥工艺中都添加膨润土载体,用于AnAOB附着和改善沉降性能,并且膨润土还可为缓冲能力较弱的废水补充碱度[44]。
3 工程化应用过程中的障碍及对策
3.1 过程扰动
目前,大约有100座运行或在建和规划中的ANAMMOX工程,其中PN-ANAMMOX是一种较为成熟的工艺。但是复杂的微生物群落和短程硝化仍然不是始终处于受控状态。文献中很少有报道工程化设施运行过程中的问题、原因和对策。其中只有少数污水厂因为硬件问题 (鼓风机、混合设备、泵) 影响到工艺运行性能。众所周知,DO浓度是最常用的控制参数,DO传感器故障会导致严重的后果,太高的曝气强度如果没有得到及时控制,将会导致硝酸盐积累。因此,监测气量而不是DO浓度可能更可靠,尤其是当DO浓度较低时[51]。
温度变化对工艺性能的影响比较小,只有当短时间内高温波动 (如一周内升高8 ℃) 时会显著影响性能。一些污水厂存在pH波动或冲击现象,这会产生严重的负面影响。太高的pH (>8.0) 会导致AnAOB活性降低导致亚硝酸盐积累,太低的pH (<6.8) 会抑制AOB。应在pH波动可以预见的情况下采取相应的调控措施。
对PN-ANAMMOX工艺性能影响较大的是进水总悬浮固体 (Total suspended solids, TSS)浓度,绝大多数污水厂都发生过由于进水TSS浓度太高或者波动带来的性能下降。DEMON工艺SBR系统经历较高的进水TSS负荷会出现硝酸盐积累,需要额外排泥,进而降低了反应器中的菌体浓度。进水TSS所含的抑制物 (例如硫化物) 还会带来抑制影响。可以采取的对策包括增加排泥量或者只是等其恢复。抑制影响会持续一段时间,但是实际工程中确定真正的抑制物比较困难[51]。
3.2 氮素积累
在PN-ANAMMOX工艺中,为了确保高性能和高处理量,应该避免氨氮、亚硝氮和硝氮的积累。尤其需控制氨 (或游离氨) 和亚硝酸盐浓度,避免基质抑制。在pH>7.6,温度>35 ℃的条件下,只有在氨浓度达到200 mg/L以上(导致游离氨抑制) 时,氨抑制才会发生,避免氨抑制的对策主要有增加曝气、减小进水流量或者减少排泥量等。目前,氨的长期负面影响在工程中还未见报道。相对而言,亚硝酸盐和硝酸盐积累通常更为重要。亚硝酸盐积累通常是因为ANAMMOX菌群紊乱或者短程硝化产能过剩。尤其在启动阶段,亚硝酸盐更应严格监控,这是因为AOB生长比AnAOB快,会引起亚硝酸盐浓度升高。AOB受到抑制后,反应器中DO浓度上升随后导致AnAOB受扰,也会导致亚硝酸盐浓度升高。可采取的对策包括停止曝气和降低负荷 (通过减小进水流量) 等。在一定情况下,反应器停止 (仅维持必要的混合)一段时间去除亚硝酸盐也是有必要的。控制pH和亚硝酸盐浓度可以有效控制游离亚硝酸抑制。就抑制而言,硝酸盐积累本身的影响并不很大,但是硝酸盐浓度的升高意味着不同微生物生理群功能失衡并且NOB大量积累。NOB和硝酸盐积累的主要原因是供氧过量,但检测出的DO浓度未必会增加。对于硝酸盐积累可以采取的对策包括减少空气流量、降低DO设定点、降低鼓风机开机频率或者减少运行时间(增加缺氧阶段)、间歇曝气 (改变开/关时间)等。在SBR系统中,除去絮状污泥或者缩短沉淀时间也是主要的控制策略。
3.3 运行问题
除了机械故障和氮素积累,还有可能遇到发泡、结垢和固体持留、沉淀和分离等难题。这些因素对于反应器性能影响不大,添加消泡剂和洒水能有效处置泡沫。虽然没有报道指出管道、泵、曝气装置结垢会直接影响性能,但持续沉积会引发严重的运行问题,传感器寿命也会受到影响。特别是处理某些含高氨氮和磷酸盐的废水 (污泥消化液) 时需要定期清洁。另外,这对于生物膜系统和依赖密度分离的系统而言,生物膜或颗粒表面结垢可能会产生不利影响。
更为重要的是污泥持留、沉淀和固体分离等问题。正如上文所述,进水固体含量长期较高会引起运行问题。太多惰性固体积累会降低活性。尤其是调节池中的沉降性能不佳所导致的主反应器中TSS冲击会引发严重的性能扰动。同样,沉降性能差的SBR中会有菌体流失。可采取的对策包括增加沉淀时间或添加絮凝剂。但相反的问题也会出现,混合不足引起的污泥絮体或聚集体过大会导致污泥上浮,最终影响排泥。
3.4 温室气体排放
目前能源和成本效益以及可持续发展逐渐演变为污水处理行业的标杆。减少污水厂温室气体的排放是可持续发展的重要部分,也是目前ANAMMOX工程化应用中的一个实际问题。而氧化亚氮 (N2O) 作为反硝化的中间产物也是一定条件下AOB的副产物,是一种重要的温室气体,其温室效应比CO2强300倍以上[56]。关于N2O从单级系统和两级系统中的排放均有报道,奥地利Strass污水厂的DEMON工艺N2O的排放量为氮负荷的1.3%[57],在间歇曝气和连续曝气期间N2O的排放量分别为氮负荷的0.6%和0.4%[4]。而在荷兰鹿特丹Dokhaven Sluisjesdijk污水处理厂的SHARON-ANAMMOX工艺,SHARON反应器N2O的排放量是氮负荷的1.7%,ANAMMOX反应器N2O的排放量是氮负荷的0.6%[58]。NAS工艺N2O的排放量则高达氮负荷的6.6%[48]。但是在AnAOB的代谢中,N2O既不是中间产物,也不是副产物[59]。N2O的排放是一个十分复杂的问题,可能涉及硝化、反硝化和化学反应,是由众多因素共同作用的结果[60-61]。而且在实际工程中,N2O的排放具有高度动态性,准确的量化只能通过高频随机取样或者连续在线监测[48]。
4 总结与展望
本文总结了ANAMMOX工程要点,虽然所报道的工程的技术指标一般都能满足设计要求,但作为一类发展不久的新型生物脱氮技术,ANAMMOX技术的工程化还远未成熟。而且工业废水和生活污水的成分往往非常复杂,这给ANAMMOX工程化推广和稳定运行带来巨大挑战。尽管在生产实践中还残留一些问题没有解决,但这些是各种生物废水处理技术的共同瓶颈。在接下来的1−2年内,全球范围内的工程化装置将会超过100座,这展示了ANAMMOX工艺无与伦比的适用性。其在节能方面展现的潜力必将带来巨大回报。因此今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。
1) 由于基建和运营成本低,一体化系统无疑是今后ANAMMOX工程化应用的新宠。该系统不仅能有效避免因亚硝酸氮累积造成的抑制作用,还可防止NOB产生硝酸盐,这是因为NOB对O2的亲和力比AOB低,对亚硝酸盐的亲和力又比AnAOB低[62]。现有研究称,在处理高浓度含氨废水时,可以通过增加游离氨(Free ammonia, FA) 来抑制亚硝酸氧化,提升总氮去除效率,但FA对NOB的抑制效果仍存疑[63-64],建议不要仅仅依赖FA来抑制亚硝酸氧化[65]。因此在今后的研究中,一体化系统的运行参数和操作条件优化将成为重点。另外,如何有效控制N2O的排放将是一体化系统必须迈过的一道坎。
2) 需要探明ANAMMOX工程对废水水质的适用性,并提出应对之策。某些废水成分对反应器性能的实际影响还鲜为人知,诸如厕所水、垃圾渗滤液、制药、养殖、焦化、制革、食品加工等行业废水通常含有一定浓度的抗生素、重金属、无机盐、硫化物和酚类等有毒物质[21,66-68],很大程度上会影响AnAOB的活性,最终可能会导致运行失稳。笔者课题组在ANAMMOX抑制方面做了大量研究,包括土霉素、铜 (Ⅱ)、盐度、硫化物、苯酚对ANAMMOX工艺的抑制作用[67-71]。研究发现,由于工作条件、实验方法、污泥的物化特性和所涉及的微生物种群不同,抑制作用差异也很大,有的放矢地缓解和调控措施也有待开发。因为AnAOB对生长环境的要求较为严格,要想实现ANAMMOX工艺更广的工程化应用,仍需进行大量关于AnAOB快速富集培养与抑制作用的研究。此外,营养物质的缺乏也需引起重视。
3) 常温或低温ANAMMOX工艺和将该工艺应用于生活污水直接脱氮是重要的发展方向。此前,大部分文献报道的自养脱氮系统运行温度都在25 ℃以上,进水氨氮浓度高于100 mg/L[72-73]。近来,低温ANAMMOX工艺的研究已经取得了突破性的进展。实验室规模25 ℃下正常运行的一体式反应器可以迅速 (10 d)适应低温并在12 ℃下稳定运行,300 d内无亚硝酸盐累积,氨氮去除率达90%以上[74]。笔者课题组的研究表明,实验室规模35 ℃下运行的ANAMMOX反应器,可通过逐步降温驯化、菌种流加或添加低温保护剂 (甜菜碱) 等方法使得反应器在9.1 ℃时的NRR高达6.61 kg N/(m3·d)[75]。ANAMMOX工艺不仅可以应用到高浓度氨氮废水,也有望应用于低氨氮的城市生活污水的处理,有望使污水处理厂达到能量平衡。中试 (4 m3,(19±1) ℃) 研究也已取得阶段性的成功[76],但是实际工程中如何提高低温下的菌体活性,实现低基质浓度下的菌体扩增,高流速下的菌体持留等问题仍是有待突破的瓶颈。
REFERENCES
[1] Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol, 2002, 99(3): 295–306.
[2] Strous M, Heijnen JJ, Kuenen JG, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biot, 1998, 50(5): 589–596.
[3] Jetten M, Cirpus I, Kartal B, et al. 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans, 2005, 33(1): 119–123.
[4] Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol, 2009, 43(14): 5301–5306.
[5] van der Star WR, Abma WR, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res, 2007, 41(18): 4149–4163.
[6] Siegrist H, Salzgeber D, Eugster J, et al. using SBA-ANAMMOX process. Water Res, 2011, 45(1): 201–210.
[9] Shen LD, Hu AH, Jin RC, et al. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system. J Hazard Mater, 2012, 199-200: 193–199.
[10] Liang Z, Liu JX. Landfill leachate treatment with a novel process: Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system. J Hazard Mater, 2008, 151(1): 202–212.
[11] Liu J, Zuo JE, Yang Y, et al. An autotrophic nitrogen removal process: short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate. J Environ Sci, 2010, 22(5): 777–783.
[12] Ahn Y, Hwang I, Min K. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste. Water Sci Technol, 2004, 49(5–6): 145–153.
[13] Hwang I, Min K, Choi E, et al. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process. Water Sci Technol, 2005, 52(10-11): 487–494.
[14] Wyffels S, Boeckx P, Pynaert K, et al. Nitrogen removal from sludge reject water by a two-stage Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci Technol, 2008, 57(3): 383–388.
[7] Vlaeminck SE, Terada A, Smets BF, et al. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environ Sci Technol, 2009, 43(13): 5035–5041.
[8] Tang CJ, Zheng P, Chen TT, et al. Enhanced nitrogen removal from pharmaceutical wastewateroxygen-limited autotrophic nitrification denitrification process. Water Sci Technol, 2004, 49(5/6): 57–64.
[15] Hao XD, Heijnen JJ, van Loosdrecht M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng, 2002, 77(3): 266–277.
[16] Nielsen M, Bollmann A, Sliekers O, et al. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol, 2005, 51(2): 247–256.
[17] Jaroszynski LW, Oleszkiewicz JA. Autotrophic ammonium removal from reject water: partial nitrification and anammox in one-reactor versus two-reactor systems. Environ Technol, 2011, 32(3): 289–294.
[18] Veys P, Vandeweyer H, Audenaert W, et al. Performance analysis and optimization of autotrophic nitrogen removal in different reactor configurations: a modelling study. Environ Technol, 2010, 31(12): 1311–1324.
[19] Vazquez-Padin JR, Figueroa M, Fernández I, et al. Post-treatment of effluents from anaerobic digesters by the anammox process. Water Sci Technol, 2009, 60(5): 1135–1143.
[20] Lackner S, Terada A, Smets BF. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study. Water Res, 2008, 42(4): 1102–1112.
[21] van Dongen U, Jetten M, van Loosdrecht M. The SHARON®-Anammox®process for treatment of ammonium rich wastewater. Water Sci Technol, 2001, 44(1): 153–160.
[22] Sri Shalini S, Joseph K. Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process. Waste Manage, 2012, 32(12): 2385–2400.
[23] Ahn Y. Sustainable nitrogen elimination biotechnologies: a review. Process Biochem, 2006, 41(8): 1709–1721.
[24] Hippen A, Rosenwinkel K, Baumgarten G, et al. Aerobic deammonification: a new experience in the treatment of waste waters. Water Sci Technol, 1997, 35(10): 111–120.
[25] Helmer-Madhok C, Schmid M, Filipov E, et al. Deammonification in biofilm systems: population structure and function. Water Sci Technol, 2002, 46(1-2): 223–231.
[26] Liu ST, Horn H. Effects of biofilm geometry on deammonification biofilm performance: a simulation study. Bioresour Technol, 2012, 116: 252–258.
[27] Liu ST, Horn H, Müller E. A systematic insight into a single-stage deammonification process operated in granular sludge reactor with high‐loaded reject‐water: characterization and quantification of microbiological community. J Appl Microbiol, 2013, 114(2): 339–351.
[28] Sliekers AO, Derwort N, Gomez JL, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res, 2002, 36(10): 2475–2482.
[29] Sliekers AO, Third KA, Abma W, et al. CANON and Anammox in a gas-lift reactor. FEMS Microbiol Lett, 2003, 218(2): 339–344.
[30] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl Environ Microb, 1998, 64(11): 4500–4506.
[31] Vlaeminck SE, De Clippeleir H, Verstraete W. Microbial resource management of one-stage partial nitritation/anammox. Microb Biotechnol, 2012, 5(3): 433–448.
[32] Kalyuzhnyi S, Gladchenko M, Mulder A, et al. DEAMOX—new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res, 2006, 40(19): 3637–3645. [33] Kalyuzhnyi SV, Gladchenko MA, Kang H, et al. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents. Water Sci Technol, 2008, 57(3): 323–328.
[34] Trukhina AI, Gladchenko MA, Kaluzhnyi SV. Reactivation of biocatalysts after long-term storage and startup of the DEAMOX process. Appl Biochem Micro Biol, 2011, 47(7): 688–694. [35] Trukhina AI, Gladchenko MA, Kalyuzhnyi SV. Optimizations of sulphide and organic modifications of the DEAMOX process. Appl Biochem Micro Biol, 2011, 47(9): 841–845.
[36] Masłoń A, Tomaszek JA. Anaerobic ammonium nitrogen oxidation in Deamox process. Environ Prot Eng, 2009, 35(2): 123–130.
[37] Furukawa K, Lieu P, Tokitoh H, et al. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Sci Technol, 2006, 53(6): 83–90.
[38] Langone M. Simultaneous partial nitritation, Anammox and denitrification (SNAD) process for treating ammonium-rich wastewaters [D]. Trento: University of Trento, 2013.
[39] Lan C, Kumar M, Wang C, et al. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour Technol, 2011, 102(9): 5514–5519.
[40] Keluskar R, Nerurkar A, Desai A. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresour Technol, 2013, 130: 390–397.
[41] Daverey A, Hung N, Dutta K, et al. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresour Technol, 2013, 141: 191–198.
[42] Daverey A, Su S, Huang Y, et al. Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor. Bioresour Technol, 2012, 113: 225–231.
[43] Chen HH, Liu ST, Yang FL, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour Technol, 2009, 100(4): 1548–1554.
[44] Lackner S, Gilbert EM, Vlaeminck SE, et al. Full-scale partial nitritation/anammox experiences–an application survey. Water Res, 2014, 55: 292–303.
[45] Rosenwinkel KH, Cornelius A. Deammonification in the moving‐bed process for the treatment of wastewater with high ammonia content. Chem Eng Technol, 2005, 28(1): 49–52.
[46] Abma WR, Driessen W, Haarhuis R, et al. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci Technol, 2010, 61(7): 1715–1722.
[47] Wett B. Development and implementation of a robust deammonification process. Water Sci Technol, 2007, 56(7): 81–88.
[48] Desloover J, De Clippeleir H, Boeckx P, et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res, 2011, 45(9): 2811–2821.
[49] Wett B. Solved upscaling problems for implementing deammonification of rejection water. Water Sci Technol, 2006, 53(12): 121–128.
[50] Wett B, Hell M, Nyhuis G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Sci Technol, 2010, 61(8): 1915–1922.
[51] Joss A, Derlon N, Cyprien C, et al. Combined nitritation–anammox: advances in understanding process stability. Environ Sci Technol, 2011, 45(22): 9735–9742.
[52] Siegrist H, Reithaar S, Koch G, et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Sci Technol, 1998, 38(8): 241–248.
[53] Schmid M, Walsh K, Webb R, et al. Candidatus“Scalindua brodae”, sp. nov., Candidatus“Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 2003, 26(4): 529–538.
[54] Szatkowska B, Cema G, Plaza E, et al. A one-stage system with partial nitritation and Anammox processes in the moving-bed biofilm reactor. Water Sci Technol, 2007, 55(8/9): 19–26.
[55] Ling D. Experience from commissioning of full-scale Deammon plant at Himmerfjärden (Sweden) [C]. 2009.
[56] Hu ZY, Lotti T, van Loosdrecht M, et al. Nitrogen removal with the anaerobic ammonium oxidation process. Biotechnol Lett, 2013, 35(8): 1145–1154.
[57] Weissenbacher N, Takacs I, Murthy S, et al. Gaseous nitrogen and carbon emissions from a full-scale deammonification plant. Water Environ Res, 2010, 82(2): 169–175.
[58] Kampschreur MJ, van der Star WR, Wielders HA, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res, 2008, 42(3): 812–826.
[59] Kartal B, Maalcke WJ, de Almeida NM, et al. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130.
[60] Ahn JH, Kim S, Park H, et al. N2O emissions from activated sludge processes, 2008−2009: results of a national monitoring survey in the United States. Environ Sci Technol, 2010, 44(12): 4505–4511.
[61] Kampschreur MJ, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment. Water Res, 2009, 43(17): 4093–4103.
[62] Blackburne R, Yuan Z, Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res, 2008, 42(8): 2166–2176.
[63] Fux C, Lange K, Faessler A, et al. Nitrogen removal from digester supernatant via nitrite-SBR or SHARON? Water Sci Technol, 2003, 48(8): 9–18.
[64] Vadivelu VM, Keller J, Yuan Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Res, 2007, 41(4): 826–834.
[65] Xing BS, Qin TY, Chen SX, et al. Performance of the ANAMMOX process using multi-and single-fed upflow anaerobic sludge blanket reactors. Bioresour Technol, 2013, 149: 310–317.
[66] Jin RC, Yang GF, Yu JJ, et al. The inhibition of the anammox process: a review. Chem Eng J,2012, 197: 67–79.
[67] Yang G, Zhang QQ, Jin RC. Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress. Bioresour Technol, 2013, 129: 65–71.
[68] Yang GF, Jin RC. The joint inhibitory effects of phenol, copper (Ⅱ), oxytetracycline (OTC) and sulfide on Anammox activity. Bioresour Technol, 2012, 126: 187–192.
[69] Yang GF, Ni WM, Wu K, et al. The effect of Cu (Ⅱ) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process. Chem Eng J, 2013, 226: 39–45.
[70] Jin RC, Yang GF, Zhang QQ, et al. The effect of sulfide inhibition on the ANAMMOX process. Water Res, 2013, 47(3): 1459–1469.
[71] Ma C, Jin RC, Yang GF, et al. Impacts of transient salinity shock loads on Anammox process performance. Bioresour Technol, 2012, 112: 124–130.
[72] van Hulle SW, Vandeweyer HJ, Meesschaert BD, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J, 2010, 162(1): 1–20.
[73] Li J, Xiong BY, Zhang SD, et al. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible? J Environ Sci, 2005, 17(6): 1022–1024.
[74] Hu ZY, Lotti T, de Kreuk M, et al. Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microb, 2013, 79(8): 2807–2812.
[75] Jin RC, Ma C, Yu JJ. Performance of an Anammox UASB reactor at high load and low ambient temperature. Chem Eng J, 2013, 232: 17–25.
[76] Lotti T, Kleerebezem R, de Kreuk MK, et al. Pilot scale evaluation of Anammox based main-stream nitrogen removal from municipal wastewater//WEF/IWA Nutrient Removal and Recovery [C], 2013.
(本文责编 陈宏宇)
Application and obstacles of ANAMMOX process
Zhengzhe Zhang, Yuxin Ji, Hui Chen, Qiong Guo, Yuhuang Zhou, Conghui Wu, and Rencun Jin
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Anaerobic ammonium oxidation (ANAMMOX), as its essential advantages of high efficiency and low cost, is a promising novel biological nitrogen elimination process with attractive application prospects. Over the past two decades, many processes based on the ANAMMOX reaction have been continuously studied and applied to practical engineering, with the perspective of reaching100 full-scale installations in operation worldwide by 2014. Our review summarizes various forms of ANAMMOX processes, including partial nitritation-ANAMMOX, completely autotrophic nitrogen removal over nitrite, oxygen limited autotrophic nitrification and denitrification, denitrifying ammonium oxidation, aerobicdeammonification, simultaneous partial nitrification, ANAMMOX and denitrification, single-stage nitrogen removal using ANAMMOX and partial nitritation. We also compare the operating conditions for one-stage and two-stage processes and summarize the obstacles and countermeasures in engineering application of ANAMMOX systems, such as moving bed biofilm reactor, sequencing batch reactor and granular sludge reactor. Finally, we discuss the future research and application direction, which should focus on the optimization of operating conditions and applicability of the process to the actual wastewater, especially on automated control and the impact of special wastewater composition on process performance.
ANAMMOX process, biological nitrogen removal from wastewater, engineering application, operational strategy
April 22, 2014; Accepted: July 11, 2014
Rencun Jin. Tel: +86-571-28865327; E-mail: jrczju@aliyun.com.cn
Supported by: National Natural Science Foundation of China (Nos. 51078121, 51278162), Science and Technology Development Program of Hangzhou (No. 20120433B20).
国家自然科学基金 (Nos. 51078121, 51278162),杭州市科技计划项目 (No. 20120433B20) 资助。