Yb3+/Er3+(Ho3+)掺杂Na YF4与Y OS荧光粉的制备与上转换发光*22
2014-06-27陈晶晶林云霞沈玉婷巨战奇
陈晶晶,林云霞,沈玉婷,巨战奇,陈 豪,唐 莹,庞 涛
(湖州师范学院理学院,浙江湖州 313000)
Yb3+/Er3+(Ho3+)掺杂Na YF4与Y OS荧光粉的制备与上转换发光*
22
陈晶晶,林云霞,沈玉婷,巨战奇,陈 豪,唐 莹,庞 涛
(湖州师范学院理学院,浙江湖州 313000)
比较研究了Yb/Er(Ho)共掺六方相NaYF4和Y2O2S在980 nm LD泵浦下的上转换发光.研究结果表明,NaYF4:20%Yb,1%Er的发光明显强于NaYF4:20%Yb,1%Ho,而Y2O2S:6%Yb,0.25%Ho与Y2O2S:6% Yb,0.5%Er却呈现相近的总发射强度.分析认为,Yb/Er和Yb/Ho之间的不同能量传递机制是导致上述现象的主要因素.
稀土;基质;上转换发光;能量传递
0 引言
近年来,上转换材料因在生物标记、红外计数器等方面的巨大应用潜力吸引了人们的高度关注[1~5].鉴于不同基质的上转换效率最大相差8个量级[6],基质选取对于高效上转换输出的获取至关重要.众所周知,稀土掺杂Na YF4和Y2O2S均是优秀的上转换材料.但Page等人[7]报导,NaYF4:Yb,Er的效率比Y2O2S:Yb,Er高30%,而Luo等人[8]研究发现,Y2O2S:Yb,Ho的发光强度是Y2O2S:Yb,Er的2.2倍.这似乎意味Y2O2S:Yb,Ho的上转换效率优于Na YF4:Yb,Er.此外,既然Y2O2S:Yb,Ho强于Y2O2S: Yb,Er,那么NaYF4:Yb,Er与NaYF4:Yb,Ho的关系如何?如果NaYF4:Yb,Er优于NaYF4:Yb,Ho,又怎样理解Y2O2S:Yb,Ho优于Y2O2S:Yb,Er?
考虑到Na YF4和Y2O2S的制备方法不同,简单比较Y2O2S:Yb,Ho和Na YF4:Yb,Er的优劣并不合适.本文主要通过实验验证后面两个问题,并给出相关物理机制.
1 实验
1.1 材料
稀土氧化物的纯度为4 N,实验用水为蒸馏水,其它原料为分析纯.
1.2 Y2O2S:Yb,Er(Ho)的合成
按化学计量比制成0.1 M稀土硝酸盐溶液.机械搅拌下,将150 ml的Na2CO3(0.1 M)水溶液迅速注入其中.30 min后,水洗、醇洗各三次获得白色沉淀,并于40℃干燥12 h.最后,在含硫气氛下于800℃焙烧1 h获得Y2O2S:Yb,Er(Ho)白色粉末.
1.3 NaYF4:Yb,Er(Ho)的合成
按化学计量比配制稀土20 ml硝酸盐储备溶液,并加入一定量的C6H8O7·H2O作为螯合剂(柠檬酸与Ln3+摩尔比为1/3).机械搅拌下,将20 ml的NaF水溶液迅速注入到上述溶液.30 min后,将产物移入50 ml高压釜,于200℃保温3 h.自然冷却至室温后,水洗、醇洗各三次,并于40℃干燥12 h得到Na YF4:Yb,Er(Ho)白色粉末.
1.4 材料表征
岛津shimadzu-6000型X射线衍射仪(XRD)用于物相与晶相分析,550 Magna-IR傅立叶红外光谱仪用于测量红外光谱(FTIR),Tecnai G220型透射电子显微镜(TEM)用于观察颗粒尺寸与形貌,而配套980 nm激光器的日立F-4500分光光度计用来测量上转换光谱(UCS).所有测试均在室温下进行.
2 结果与讨论
为了确定样品的物相和晶相,我们测量了Na YF4:20%Yb,1%Er和Y2O2S:6%Yb,0.25%Ho的XRD谱,如图1所示.与JCPDS#281192和#241424标准数据匹配良好,表明六方相Na YF4和Y2O2S已经获得.
图1 NaYF4:20%Yb,1%Er(a)和Y2O2S:6%Yb,0.25%Ho(b)的XRD谱Fig. 1 XRD pattern of NaYF4:20%Yb,1%Er(a) and Y2O2S: 6%Yb,0.25%Ho(b)
图2 NaYF4:20%Yb,1%Er(虚线)和 NaYF4:20%Yb,1%Ho(实线)的 UCSFig. 2 UCS of NaYF4:20%Yb,1%Er( dashed line) and NaYF4:20%Yb,1%Ho(solid line)
同上,为了比较Y2O2S:6%Yb,0.5%Er和Y2O2S:6%Yb,0.5%Ho的上转换发光特性,我们测量了两个样品在相同测试条件下的上转换光谱,如图3所示.与文献报导相似[8],Yb3+、Er3+和Ho3+的最佳浓度分别是6%、0.5%和0.25%.事实上,很多氧化物和含氧酸盐的掺杂浓度都不像Na YF4那么高[5,8~10].由图3的TEM和FTIR表明,颗粒呈纳米结构且表面吸附OH-和CO32-.这些高能振动基团增加了多声子弛豫几率,因此与体材料相比,纳米晶具有较差的绿光色纯度[8],特别是Yb/Er的红光强于绿光,并呈现与Yb/Ho几乎相同的总发射强度.
图3 Y O S: 6%Yb,0.5%Er(虚线)和Y O S:6%Yb,0.25%Ho(实线)的UCS,插图Y O S:6%Yb,0.5%Er的 TEM和 FTIR谱Fig. 3 UCS of Y O S:6%Yb,0.5%Er(dashed line) and Y O S: 6%Yb,0.25%Ho(solid line), inset:TEM and FTIR of Y O S:6%Yb,0.5%Er
为了理解图2和图3中出现的不同现象,图4给出了掺杂离子的能级结构及相关的能级布居过程.如图4所示,Yb3+、Er3+是共振能量传递,而Yb3+、Ho3+之间是声子辅助能量传递过程.前者的上转换效率主要取决于辐射跃迁与非辐射跃迁的竞争,基质声子能越低上转换效率越高.但对于后者,上转换效率除了与上述因素有关外,还依赖于Yb3+、Ho3+之间的能量传递效率.显然,在不显著增加非辐射跃迁的前提下,较高的声子能可减少弥补Yb3+与Ho3+能量失配的声子数,从而增强上转换效率.相比于NaYF4, Y2O2S具有略高的声子能,因此与Na YF4:20%Yb,1%Er强于Na YF4:20%Yb,1%Ho不同,Y2O2S:6% Yb,0.25%Ho和Y2O2S:6%Yb,0.5%Er呈现了相近的总发射强度.
图4,,与的能级结构及可能的布居过程Fig. 4 The energy level diagram of Ho3+,Yb3+and Er3+, and possible upconversion em ission and excitation mechanism
3 结论
分别采用水热法和固气硫化法合成了NaYF4:Yb/Er(Ho)和Y2O2S:Yb/Er(Ho)上转换荧光粉.Yb/Er、Yb/Ho共掺的不同能量传递机制及Na YF4和Y2O2S的不同晶格振动能使Na YF4:20%Yb,1% Er的发光明显强于NaYF4:20%Yb,1%Ho,而Y2O2S:6%Yb,0.5%Ho与Y2O2S:6%Yb,0.5%Er具有相近的总发射强度.
[1]Song Z,Anissim Y G,Zhao J B,et al.Backgroud free imaging of upconversion nanoparticle distribution in human skin [J].J Biomed Opt,2013,18(6):12-15.
[2]Yuan P Y,Lee Y H,Gnanasammandhan M K,et al.Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@ SiO2@Ag core-shell nanocomposites for cell imaging[J].Nanoscale,2012(4):5-132-5-137.
[3]Jiang T,Liu Y,Liu SS,et al.Upconversion emission enhancement of Gd3+ions induced by surface Plasmon field in Au @NaYF4nanostructures codoped with Gd3+Yb3+Tm3+ions[J].J Colloid Interf Sci,2012,377(1):81-87.
[4]Wang L L,Qin W P,Liu Z Y,et al.Improved 800 nm emission of Tm3+sensitized by Yb3+and Ho3+inβNaYF4nanocrystals under 980 nm excitation[J].Opt Express,2012,20(7):7-6027-607.
[5]Yang J,Zhang C M,Peng C,et al.Controllable red,green,blue(RGB)and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+nanocrystals through single laser excitation at 980 nm[J].Chem Eur J,2009,15(18):4-649-4-655.
[6]Heer S,Kömpe K,Güdel H U,et al.Highly efficient multicolour upconversion emission in transparent colloids of lanthanide doped NaYF4nanocrystals[J].Adv Mater,2004,16(23):2-1022-105.
[7]Page R H,Schaffers K I,Waide P A,et al.Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium[J].J Opt Soc Am B,1998,15(3):996-1008.
[8]Luo X X,Cao W H.Upconversion luminescence of holmiu and ytterbium co-doped yttrium oxysulfide phosphor[J]. Mater Lett,2007,61(17):3-6963-700.
[9]Li Y H,Zhang Y M,Hong G Y,et al.Upconversion luminescence of Y2O3:Er3+,Yb3+nanoparticles prepared by a homogeneous precipitation method[J].J Rare Earth,2008,26(3):450-453.
[10]Lu W C,Ma X H,Zhou H,et al.White upconversion luminescence in rare-earth-ion-doped YAl O3nanocrystals[J]. J Phys Chem C,2008,112(38):15-071-15-074.
Preparation and Upconversion Iuminescence of NaYF4and Y2O2S co-doped with Yb3+/Er3+(Ho3+)Phosphor
CHEN Jingjing,LIN Yunxia,SHEN Yuting,JU Zhanqi,CHEN Hao,TANG Ying,PANG Tao
(School of Science,Huzhou University,Huzhou 313000,China)
Having studied the upconversion luminescence properties of Yb/Er(Ho)co-doped NaYF4and Y2O2S phosphors,we find the results indicate that the emissive intensity of Na YF4:20%Yb,1%Er is stronger than that of Na YF4:20%Yb,1%Ho,while the Y2O2S:6%Yb,0.5%Ho and Y2O2S:6%Yb, 0.5%Er present the similar total emissive intensity.This can be explained by the different energy transfer mechanism between Yb/Er and Yb/Ho pairs.
rare earth;matrix;upconversion luminescence;energy transfer
O482.31
A
1009-1734(2014)02-0027-04
2014-01-20
浙江省教育厅科研基金(201121038);国家级大_学生创新训练项目(201210347008)
庞涛,讲师,研究方向:发光材料与纳米材料.E-mail:tpang@126.com