APP下载

炔基取代的新型β-内酰胺化合物的合成*

2014-06-23范甜甜董理进王超孙健

合成化学 2014年2期
关键词:淡黄色内酰胺总产

范甜甜,董理进,王超,孙健

(1.中国科学院成都生物研究所天然产物研究中心,四川 成都 610041;2.中国科学院大学,北京 100049)

炔基取代的新型β-内酰胺化合物的合成*

范甜甜1,2,董理进1,2,王超1,孙健1

(1.中国科学院成都生物研究所天然产物研究中心,四川 成都 610041;2.中国科学院大学,北京 100049)

首次报道了以芳香炔醛为起始原料,通过二聚反应、氧化反应、Michael加成及内酰化缩合反应合成了一系列芳炔基取代的新型四元β-内酰胺类化合物,收率57.6%~72.5%,其结构经1H NMR,13C NMR和X-射线单晶衍射表征。

芳香炔醛;二聚反应;β-内酰胺;合成

四元β-内酰胺类化合物具有广泛的生物活性,如抗病毒[1]、抗菌[2]、抗疟疾[3]、调血脂[4-5],并广泛应用于荧光探针[6]和生物传感器[7]等领域,倍受医学和制药领域等科研工作者的关注。

调研发现,具有不同取代模式的β-内酰胺化合物具有不同的活性[8-9]。例如青霉素与头孢类抗菌药物[10],分别具有四元β-内酰胺并五元环、六元环的结构,而抗糖尿病药物Zetia则是C3上含有对氟苯基和C4上含有对羟苯基取代的四元β-内酰胺环[11-12]。因此,合成具有新型取代模式的β-内酰胺类化合物对于发现β-内酰胺类创新药物具有重要意义。

最近,本课题组首次发现芳香炔醛在脯氨醇催化下发生二聚反应[13]。以此为基础,本文设计了一条将此二聚反应与氧化、Michael加成及内酰化相结合,制备含炔基取代的新型β-内酰胺类化合物。芳香炔醛(1a,1i~1m)在α,α-二苯基脯氨醇的催化下经二聚反应得5-苯基-2-苄氧羰基戊-2-烯-4-炔醛衍生物(2a,2i~2m);2经氧化反应制得5-苯基-2-苄氧羰基戊-2-烯-4-炔酸衍生物(3a~3f);3与芳胺(4a~4h,4n)经内酰化缩合反应合成了14个新型的四元β-内酰胺类化合物(5a~5n,Scheme 1),收率57.6%~72.5%,其结构经1H NMR和13C NMR表征。其中5b的结构经X-射线单晶衍射表征。

首次报道了通过芳香炔醛制备含有炔基取代的一系列新型β-内酰胺化合物,为进一步活性筛选及创新药物发现奠定了基础。

1 实验部分

1.1 仪器与试剂

Avance Brucker-600 MHz型核磁共振仪(CDCl3为溶剂,TMS为内标);Bruker Smart Apex型X-射线单晶衍射仪。

HSGF254型薄层板;硅胶200目~300目,青岛海洋化工厂;其余所用试剂均为分析纯。

1.2 合成

(1)2a,2i~2m的合成(以2a为例)

在圆底烧瓶中加入1a 520 mg(4.0 mmol)和THF 30 mL,搅拌下依次加入催化剂α,α-二苯基脯氨醇202 mg(0.8 mmol),三氟乙酸0.8 mL(0.8 mmol),1.0 mmol·mL-1的THF溶液,于室温反应48 h。减压浓缩后经硅胶柱层析[洗脱剂: A=V(石油醚)∶V(乙酸乙酯)=15∶1]纯化得淡黄色固体2a,产率72%。

用类似方法合成淡黄色固体2i~2m,产率63.2%~78.3%。

(2)3a~3f的合成(以3a为例)

在圆底烧瓶中加入2a 260 mg(1.0 mmol)和叔丁醇10 mL,搅拌使其溶解;依次加入2-甲基-2-丁烯1 mL(10.0 mmol),亚氯酸钠181 mg(2.0 mmol)的磷酸二氢钠溶液(pH 3.5)5 mL,于室温反应12 h。减压蒸除叔丁醇,用乙酸乙酯(2×30 mL)萃取,合并有机相,用饱和氯化钠溶液(2×30 mL)洗涤,无水硫酸镁干燥,减压浓缩后经硅胶柱层析(洗脱剂:A=1∶1)纯化得淡黄色固体3a,产率82%。

用类似方法合成淡黄色固体3b~3f,产率82.2%~91.3%。

(3)5a~5n的合成(以5a为例)

在圆底烧瓶中加入3a 110mg(0.4mmol),苯胺(4a)36.5μL(0.4 mmol)和二氯甲烷10 mL,搅拌下加入N,N-二异丙基乙胺132μL(0.8 mmol),冰水浴冷却下加入缩合剂HATU[2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯]152 mg(0.4 mmol),于室温反应24 h。加水5 mL洗涤,减压浓缩后经硅胶柱层析(洗脱剂:A= 30∶1)纯化得白色固体芳基β-内酰胺(5a),产率65%(以3计,下同)

用类似方法合成白色或浅黄色固体5b~5n。

5a:白色固体,产率65.7%(总产率35.9%,以1计,下同);1H NMR(600 MHz,下同)δ: 8.19(d,J=7.6 Hz,2H),7.65(t,J=7.4 Hz,1H),7.59~7.54(m,4H),7.43(d,J=7.1 Hz,2H),7.39(t,J=7.9 Hz,2H),7.33~7.30(m,3H),7.16(t,J=7.5 Hz,1H),5.57(d,J=2.5 Hz,1H),5.22(d,J=2.6 Hz,1H);13C NMR (150 MHz,下同)δ:189.7,158.8,137.1,135.5,134.2,131.8,129.2,129.1,128.8,128.4,124.6,121.5,117.0,87.3,83.68,66.7,43.1。

5b:白色固体,产率72.5%,总产率34.2%;1H NMRδ:8.18(d,J=7.4 Hz,2H),7.63(t,J=7.4 Hz,1H),7.54(t,J=7.7 Hz,2H),7.46 (d,J=8.4 Hz,2H),7.45~7.40(m,2H),7.36~7.27(m,3H),7.17(d,J=8.2 Hz,2H),5.54(d,J=2.5 Hz,1H),5.19(d,J=2.6 Hz,1H),2.32(s,3H);13C NMRδ:189.9,158.6,135.6,134.7,134.3,134.2,131.9,129.7,129.5,129.1,128.9,128.4,121.7,116.9,87.2,83.8,66.8,43.1,20.9;HR-MS(ESI)m/z:Calcd for C25H19NO2Na{[M+Na]+}388.130 8,found 388.131 0。

5c:白色固体,产率69.4%,总产率31.1%;1H NMRδ:8.19(d,J=7.3 Hz,2H),7.64(t,J=7.4 Hz,1H),7.57~7.51(m,4H),7.44~7.42(m,2H),7.36~7.29(m,3H),6.92(d,J=9.0 Hz,2H),5.53(d,J=2.5 Hz,1H),5.19(d,J=2.5 Hz,1H),3.80(s,3H);13C NMRδ:189.9,158.4,156.7,135.6,134.2,131.9,130.6,129.5,129.1,128.9,128.4,121.6,118.5,114.5,87.2,83.8,66.8,55.5,43.3。

5d:淡黄色固体,产率61.9%,总产率33.5%;1H NMRδ:8.18(d,J=7.4 Hz,2H),7.65(t,J= 7.3Hz,1H),7.55(t,J=7.7 Hz,2H),7.49~7.48 (m,1H),7.46~7.43(m,2H),7.36~7.32 (m,3H),7.26(s,1H),7.17(t,J=9.0 Hz,1H),5.55(d,J=2.5 Hz,1H),5.24(d,J=2.5 Hz,1H);13C NMRδ:189.3,158.8,151.3(d,J=13.5 Hz),149.60(d,J=13.5 Hz),148.16 (d,J=12.8 Hz),146.53(d,J=12.7 Hz),135.3,134.4,131.9,129.4(d,J=16.8 Hz),128.9,128.5,121.3,117.8(d,J=18.3 Hz),112.6,106.9,106.9,87.9,82.9,67.0,43.7。

5e:白色固体,产率68.3%,总产率29.8%;1H NMRδ:8.20~8.17(m,2H),7.67~7.51 (m,6H),7.45~7.42(m,2H),7.36~7.32 (m,4H),5.56(d,J=2.5 Hz,1H),5.23(d,J=2.5 Hz,1H);13C NMRδ:189.5,158.8,135.6,135.4,134.3,131.9,129.4,129.3,128.9,128.5,121.5,118.2,87.7,83.3,77.3,77.1,76.9,66.9,43.4。

5f:淡黄色固体,产率60.5%,总产率27.3%;1H NMRδ:8.19(d,J=7.4 Hz,2H),7.66(q,J= 8.6 Hz,5H),7.57(t,J=7.8 Hz,2H),7.45~ 7.42(m,2H),7.37(t,J=7.3 Hz,1H),7.33 (t,J=7.3 Hz,2H),5.61(d,J=2.6 Hz,1H),5.26(d,J=2.6 Hz,1H);13C NMRδ:189.2,159.2,139.7,135.3,134.4,131.9,129.5,129.3,128.9,128.5,126.6,126.4,121.3,116.9,87.9,82.9,67.0,43.5。

5g:淡黄色固体,产率70.8%,总产率32.7%;1H NMRδ:8.29(d,J=9.1 Hz,2H),8.18(d,J= 7.4 Hz,2H),7.70~7.67(m,3H),7.58(t,J= 7.8 Hz,2H),7.43(d,J=7.1 Hz,2H),7.38 (t,J=7.3 Hz,1H),7.34(d,J=7.6 Hz,2H),5.65(d,J=2.7 Hz,1H),5.30(d,J=2.7 Hz,1H);13C NMRδ:188.8,159.3,143.9,141.9,138.1,135.1,134.6,131.9,129.5,129.0,128.5,125.4,121.0,116.9,87.2,82.4,67.2,43.9。

5h:白色固体,产率64.9%,总产率31.9%;1H NMRδ:8.17(d,J=7.9 Hz,2H),7.67(q,J=8.6 Hz,5H),7.57(t,J=7.6 Hz,2H),7.43 (d,J=7.5 Hz,2H),7.37(d,J=7.2 Hz,1H),7.33(t,J=7.4 Hz,2H),5.61(d,J=2.4 Hz,1H),5.27(d,J=2.5 Hz,1H);13C NMRδ: 188.9,159.3,146.6,140.3,135.2,134.5,133.5,131.9,129.5,128.9,128.5,121.1,118.6,127.3,107.8,88.3,82.6,67.1,43.6。

5i:白色固体,产率57.6%,总产率30.6%;1H NMRδ:7.80(d,J=7.7 Hz,1H),7.70(s,1H),7.58(d,J=7.7 Hz,2H),7.47(t,J=7.9 Hz,1H),7.39(t,J=8.0 Hz,2H),7.23~7.19 (m,2H),7.16(s,1H),7.03(d,J=7.6 Hz,1H),6.96(s,1H),6.91(d,J=8.2 Hz,2.0 Hz,1H),5.55(d,J=2.6 Hz,1H),5.19(d,J=2.6 Hz,1H),3.89(s,3H),3.78(s,3H);13C NMRδ:189.6,159.9,159.4,158.8,137.1,136.8,129.9,129.5,129.2,124.7,124.4,122.5,122.3,121.1,117.0,116.8,115.7,113.1,87.3,83.5,66.9,55.5,55.3,43.2。

5j:白色固体,产率63.4%,总产率32.7%;1H NMRδ:8.13(d,J=8.3 Hz,2H),7.59(d,J=7.7 Hz,2H),7.42~7.36(m,6H),7.19~7.13(m,3H),5.56(d,J=2.5 Hz,1H),5.20 (d,J=2.5 Hz,1H),3.02~2.98(m,1H),2.92~2.87(m,1H),1.30(d,J=6.9 Hz,6H),1.24(d,J=6.9 Hz,6H);13C NMRδ: 189.3,159.2,155.9,150.2,137.2,133.5,131.9,129.8,129.2,127.0,126.6,124.5,118.9,117.0,87.6,83.2,66.7,43.3,34.4,34.1,23.8,23.7,23.6。

5k:白色固体,产率66.1%,总产率29.5%;1H NMRδ:8.13(d,J=8.5 Hz,2H),7.58(t,J=8.2 Hz,4H),7.39~7.33(m,6H),7.14(t,J=7.5 Hz,1H),5.56(d,J=2.5 Hz,1H),5.20(d,J=2.5 Hz,1H),1.37(s,9H),1.30 (s,9H);13C NMRδ:189.3,159.1,158.1,152.5,137.2,132.9,131.6,129.5,129.2,125.9,125.4,124.5,118.6,117.0,87.5,83.2,66.7,43.3,35.3,34.8,31.1,31.1。

5l:白色固体,产率68.0%,总产率32.3%;1H NMRδ:8.13(d,J=8.5 Hz,2H),7.55~7.51(m,4H),7.39(t,J=7.9 Hz,2H),7.35 (d,J=8.5 Hz,2H),7.29(d,J=8.5 Hz,2H),7.16(t,J=7.4 Hz,1H),5.56(d,J=2.5 Hz,1H),5.15(d,J=2.5 Hz,1H);13C NMRδ: 188.4,158.4,140.9,136.9,135.4,133.8,133.1,130.9,129.3,129.3,128.8,124.8,119.9,116.9,86.4,84.5,66.8,42.9。

5m:白色固体,产率60.7%,总产率32.6%;1H NMRδ:8.16(d,J=8.8 Hz,2H),7.47(d,J=8.3 Hz,2H),7.37(d,J=8.7 Hz,2H),7.17(d,J=8.2 Hz,2H),7.01(d,J=8.8 Hz,2H),6.83(d,J=8.7 Hz,2H),5.53(d,J=2.4 Hz,1H),5.14(d,J=2.4 Hz,1H),3.88(s,3H),3.79(s,3H),2.33(s,3H);13CNMRδ: 188.2,164.4,160.2,159.1,134.8,134.1,133.4,131.9,129.7,128.7,116.9,114.1,114.1,113.8,87.2,82.7,77.3,77.1,76.9,66.5,55.6,55.3,43.3,20.9。

5n:白色固体,产率59.9%,总产率29.6%;1H NMRδ:8.13(d,J=8.8 Hz,2H),7.65(d,J=4.4 Hz,4H),7.36(d,J=8.7 Hz,2H),7.02(d,J=8.8 Hz,2H),6.84(d,J=8.7 Hz,2H),5.57(d,J=2.7 Hz,1H),5.20(d,J=2.6 Hz,1H),3.90(s,3H),3.81(s,3H);13C NMR δ:187.3,164.7,160.4,159.8,140.4,133.5,133.4,131.9,128.3,118.7,117.2,114.2,114.2,113.1,107.6,88.2,81.5,66.8,55.6,55.3,43.8。

2 结果与讨论

为了进一步确证产物的机构,本文对5b作了X-射线单晶衍射(图1)。从图(1)可知,其3-位和4-位的两个取代基为反式构型,通过与5b的核磁数据对比,5a和5c~5n均具有反式构型,说明本文的合成路线以生成3,4-反式为主的β-内酰胺产物。

另外,Scheme 1路线对芳香炔醛和芳香胺反应底物都有较好的兼容性。对具有不同取代基的芳香炔醛与胺,都能得到目标产物,且合成总收率均在30%以上。

图1 5b的分子结构图Figure 1 Molecular structure of5b

实验中我们曾以脂肪胺作为反应底物,但实验未成功,未能得到内酰胺产物。

[1]Glynn A A.Penicillin Man:Alexander fleming and the antibiotic revolution K[J].J Antimicrob Chemoth,2005,56(2):444-445.

[2]Wu J,Wu X,Lei F,et al.Design,synthesis and antibacterial activities of a series of new 2-oxaisocephems[J].Med Chem Lett,2012,22(16):5293-5296.

[3]Singh P,Kumar M,Gut J,et al.Synthesis,docking and in vitro antimalarial evaluation of bifunctional hybrids derived fromβ-lactams and 7-chloroquinoline using click chemistry[J].Med Chem Lett,2012,22 (1):57-61.

[4]Michalak M,Stodulski M,Stecko S,et al.A formal synthesis of ezetimibe via cycloaddition/rearrangement cascade reaction[J].Org Chem,2011,6(16):6931-6936.

[5]Clader JW.The discovery of ezetimibe:A view from outside the receptor[J].JMed Chem,2003,47(1): 1-9.

[6]Staub I,Sieber S A.β-Lactams as selective chemical probes for the in vivo labeling of bacterial ezymes ivolved in cell wall biosynthesis,antibiotic resistance,and virulence[J].JAm Chem Soc,2008,130(40):13400-13409.

[7]Chan P H,Chan K C.Fluorophore-labeledβ-lactamase as a bosensor forβ-lactam antibiotics:A study of the biosensing process[J].JAm Chem Soc,2008,130 (20):6351-6361.

[8]O’Boyle N M,Carr M,Greene L M,et al.Synthesis and evaluation of azetidinone analogues of dombretastatin A-4 as tubulin targeting agents[J].JMed Chem,2010,53(24):8569-8584.

[9]Tripodi F,Pagliarin R,Fumagalli G,et al.Synthesis and biological evaluation of1,4-diaryl-2-azetidinones as specific anticancer agents:Activation of adenosine monophosphate activated protein kinase and induction of apoptosis[J].JMed Chem,2012,55(5):2112-2124.

[10]Salehpour P,Yegani R,Hajmohammadi R.Determination of optimal operation conditions for production of cephalosporin G from penicillin G potassium[J].Org Process Res Dev,2012,16(9):1507-1512.

[11]Sasikala C H V A,Reddy Padi P,Sunkara V,etal.An improved and scalable process for the synthesis of ezetimibe:An antihypercholesterolemia drug[J].Org Process Res Dev,2009,13(5):907-910.

[12]Wang X,Meng F,Wang Y,etal.Aromatic spiroketal bisphosphine ligands:Palladium-catalyzed asymmetric allylic amination of racemic morita-baylis-hillman adducts[J].Angew Chem Int Edit,2012,51(37):9276-9282.

[13]Dong L J,Fan,T T,Wang C,et al.One-pot formation of chiral polysubstituted 3,4-dihydropyrans via a novel organocatalytic domino sequence involving alkynal self-condensation[J].Org Lett,2012,15(1): 204-207.

Synthesis of Alkynyl Substituted Novelβ-Lactam s

FAN Tian-tian1,2,DONG Li-jin1,2,WANG Chao1,SUN Jian1
(1.Natural Products Research Center,Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)

A series of novel alkynyl substitutedβ-lactams in yield of 57.6%~72.5%were synthesized from aromatic alkynals by the reaction of self-condensation,oxidation,Michael addition and lactamization.The structureswere characterized by1H NMR,13C NMR and X-ray single crystal diffraction.

aromatic alkynal;self-condensation;β-lactam;synthesis

O625.43

A

1005-1511(2014)02-0214-04

2013-02-16;

2013-12-26

范甜甜(1987-),女,汉族,湖北潜江人,硕士研究生,主要从事药物合成及化合物的生物活性研究。

王超,副研究员,博士,E-mail:wangchao@cib.ac.cn;孙健,研究员,博士生导师,E-mail:sunjian@cib.ac.cn

猜你喜欢

淡黄色内酰胺总产
山西夏收全面完成 总产单产好于常年
2021年山西省夏粮总产24.34亿千克
山西:夏粮总产增长秋粮长势良好
利用高效液相色谱法 高效检测动物源性食品中β-内酰胺类抗生素残留
告诉谁
《β-内酰胺类抗生素残留分析的新型荧光检测物》图版
FeCl3 Catalyzed Carbon-Carbon Bond Formation by Nucleophilic Substitution of Hydroxy Groups
“鸟粪”——“青蛇”——“枯叶”
β-内酰胺类抗生素的不良反应调查报告
“鸟粪”—“青蛇”—“枯叶”