N不大于2000的π(N)的求法
2014-04-29宁兆顺
宁兆顺
摘 要: 依据素数的分布规律,创立了N不大于2000的π(N)的计算公式,并给出计算实例.
关键词: 素数分布 素数规律 π(N)计算 π(x)
1.理论根据
引理.命k是正整数,6k±1通过>3的所有素数.
证明:任一整数a都可表达为a=6k+b的形式,k是整数,-1≤b≤4.当b=0,2,4,由2|b和2|6,有2|a.同理,当b=3,3|a.所以,当a表>3的素数,b=±1,k取正整数,引理得证.
定理1.设k和c是正整数,将>3的素数r表为6c±1,当k≡c(mod r),r|(6k±1),当k≡-c(mod r),r|(6k?芎1).
证明:由引理,>3的素数r必能表为6c±1.
在此,把不大于1200的素数从素数表上忠实地誊抄于后:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193.