农产品中大肠杆菌O157∶H7的来源及分布研究进展
2014-04-07赖卫华陈明慧
山 珊,赖卫华,陈明慧,崔 希
(南昌大学 食品科学与技术国家重点实验室,江西 南昌 330047)
农产品中大肠杆菌O157∶H7的来源及分布研究进展
山 珊,赖卫华*,陈明慧,崔 希
(南昌大学 食品科学与技术国家重点实验室,江西 南昌 330047)
近年来,由大肠杆菌O157∶H7污染农产品而引起的食源性疾病频繁发生。农产品可能会在生长过程中感染大肠杆菌O15 7∶H7, 了解农产品中大肠杆菌O157∶H7的来源及其分布,可以为预防农产品污染 提供建议。本文就农产品中大肠杆菌O157∶H7可能的来源和其在农产品中的大致分布情况进行了综述。
农产品;大肠杆菌O157∶H7;来源;分布
微生物引起的食源性疾病是全世界、也是我国的头号食品安全问题[1]。在食源性致病菌中,大肠杆菌O157∶H7是最危险的一种,它的感染剂量非常低,最低10个活菌就可能感染致病[2]。大肠杆菌O157∶H7感染后一般先出现腹部绞痛和非出血性腹泻,超过70%的病人能够发展成出血性腹泻;30%~60%的病人有呕吐现象;30%的病人有低度发热症状;3%~5%的病人能够发展成溶血性尿毒综合症,导致急性肾衰竭而死亡[3]。大肠杆菌O157∶H7能够污染猪肉、禽肉、牛肉、牛奶、果汁、冷三明治、蔬菜 和饮水等,该菌的流行暴发大多是因为食用了被该菌污染的食物或未严格消毒的饮用水。此外,大肠杆菌还能通过人与人之间的接触传播[4-5]。
自美国1982年首次报道大肠杆菌O157∶H7危害人类健康以来,世界上许多国家相继发生了大肠杆菌O157∶H7的感染[6]。已报道暴发大肠杆菌O157∶H7感染的国家有美国、加拿大、日本、英国、苏格兰、中国、爱尔兰、比利时、丹麦、德国、澳大利亚、南非、以色列等。1996年,日本暴发了大规模的大肠杆菌O157∶H7感染,上万人感染患病,短短2周内就有12人不治身亡[7]。2006年9月,美国多个州暴发毒菠菜事件,短短十几天内就有199名病人确诊住院,事件共造成3人死亡,调查发现患者都是因为食用了被大肠杆菌O157∶H7污染的菠菜而致病[8-9]。
1986年我国首次从江苏省徐州市出血性腹泻患者的粪便中分离出大肠杆菌O157∶H7。自1997年我国在一定范围内开展肠出血性大肠杆菌O157∶H7监测工作以来,已陆续有十余个省份从市售食品、进口食品、家畜家禽、腹泻病患者的排泄物中分离出肠出血性大肠杆菌O157∶H7[10-12]。特别是1999年我国部分地区出现了肠出血性大肠杆菌O157∶H7感染性腹泻的暴发,表明肠出血性大肠杆菌O157∶H7感染性腹泻已成为威胁我国人民健康的重要公共卫生问题。
农产品被认为是人类汲取营养物质的重要来源,是健康饮食的重要组成部分,许多国家鼓励人们多食新鲜蔬菜水果来预防一些疾病,如心脑血管疾病和癌症。近年来全球对农产品的需求量逐渐增多,同时,农产品上的致病菌引起的疾病也不断地出现,尤其是大肠杆菌O157∶H7引 起的疾病,更加引人关注。对此,分析农产品中大肠杆菌O157∶H7的来源和分布显得尤为重要,而我国在此领域的研究非常薄弱。本文对农产品中大肠杆菌O157∶H7的来源及分布进行综述,可以更好的了解污染农产品的大肠杆菌O157∶H7的来源及分布。
1 农产品上大肠杆菌O157 H7的来源
在农产品生长的过程中,污染农产品的大肠杆菌O157∶H7的来源可能是土壤、灌溉水、粪肥和昆虫、动物等[13-15]。
土壤是农作物生长发育的重要物质基础,大肠杆菌O157∶H7进入到土壤中,可以在其中存活很长时间,土壤成为大肠杆菌O157∶H7传播到农产品的重要途径。有报道[16]称大肠杆菌O157∶H7可以在土壤中存活7~24周,具体时间取决于土壤的类型、湿度水平和温度等因素。大肠杆菌O157∶H7可以在种植洋葱和胡萝卜的土地上分别存活154 d和196 d[17]。研究表明长期存在于生菜种上的大肠杆菌O157∶H7会在种子长成幼苗时大量繁殖[18],而土壤中的大肠杆菌O157∶H7很容易污染植物的种子,从而进一步污染植物幼苗。土壤中的大肠杆菌O157∶H7会直接污染植物的根部,并有可能内化进入植物的根部,然后通过植物脉管系统被运 输到叶茎[19]。研究表明使用被大肠杆菌O157∶H7污染的堆肥,会导致大肠杆菌O157∶H7转移到生菜上,并会在生菜上存留几个月[20]。Girardin等[21]认为植物的叶子直接接触土壤时会引起细菌污染;当灌溉水或是雨水带有土壤飞溅到叶子上时,同样也会引起污染。
用来灌溉农产品的水和灌溉方式都会对大肠杆菌O157∶H7在农产品上的存活产生影响[22]。Ahmed等[23]研究发现,在澳大利亚用来灌溉农产品的小溪和池塘中有28%的水源大肠杆菌O157∶H7呈阳性。在加拿大,Gannon等[24]检测用来灌溉的河流,其中有10.3%被检测到了大肠杆菌O157∶H7。大肠杆菌O157∶H7在8℃的过滤和高压蒸汽处理后的城市用水中可以存活91 d,在25℃时存活49 d[25];大肠杆菌O157∶H7在15℃的过滤和高压蒸汽处理后的农场用水中可以存活65 d。许多研究表明灌溉农产品的方式会影响大肠杆菌O157∶H7到农产品上的转移。与沟灌相比,使用地下滴灌的方式可以减少农产品在生长过程中来自土壤的污染[27];研究发现当使用喷洒式的方法灌溉生菜时,生菜上的大肠杆菌O157∶H7存活的时间比使用其他灌溉方式存活的时间长[20]。Solomon等[28]使用含有等量大肠杆菌O157∶H7的灌溉水浇灌菠菜,选用喷洒式灌溉和地面灌溉两种方式,结果发现在菠菜上大肠杆菌O157∶H7的残留量分别是90%和19%。许多研究证实了用被污染的水对农产品进行灌溉可导致农产品表面被污染,并且会导致致病菌内化到植物的某些部位[29-32]。
用作肥料或土壤改良剂的人畜粪便是污染农产品的大肠杆菌O157∶H7的主要来源之一。Islam等[17]在被动物粪便污染的土壤上种植洋葱和胡萝卜,发现大肠杆菌O157∶H7会转移到它们表面,并且在洋葱和胡萝卜上可分别存活74 d和168 d。研究牛粪内大肠杆菌O157∶H7的生长状况发现,牛 粪中的大肠杆菌O157∶H7在37℃和22℃的条件下,分别能存活42~49 d和49~56 d[33]。另一项有关大肠杆菌O157∶H7的研究报告表明,大肠杆菌O157∶H7在牛粪、暴露在空中气 的羊粪和不通气的羊粪中存活的时间分别为47、120 d和630 d[34]。Islam等[17]研究的结果表明,与使用处理过的肥料相比,使用鸡粪和牛粪做肥料时,土壤中的大肠杆菌O157∶H7存活时间更长,生长状况更好。
此外,引起农产品中大肠杆菌O157∶H7污染的来源还可能是一些昆虫、牲畜等媒介的活动。报道称引起食源性疾病的原因是动物或者动物粪便接触了食物,来自牲畜的肠道致病菌更有可能污染农产品[35]。健康牛的肠道是大肠杆菌O157∶H7的主要寄居地,大肠杆菌O157∶H7在牛粪中会瞬间繁殖[36],而动物的粪便是一些蝇类主要的寄居处,比如家蝇和丽蝇。如果要控制大肠杆菌O157∶H7的污染源,蝇类一定要加强控制[37]。Telley等[38]的研究结果表明,家蝇可以携带大肠杆菌O157∶H7,污染生长的菠菜和生菜。在果蝇和家蝇的身体中或是在它们的壳表面会携带大肠杆菌O157∶H7,它们通过反复地接触农产品或者会在其上排泄而污染植物和食品表面[38-40]。有报道证实携带大肠杆菌 O157∶H7的果蝇是苹果创口污染菌定植的媒介,在果蝇与苹果接触后的4 8 h内都可以从苹果创口中检测到大肠杆菌O157∶H7[41]。研究表明昆虫和物理伤害会导致大肠杆菌O157∶H7内化到生菜中[42]。昆虫作为主要的带菌者,会通过它们的摄食活动损害植物表面,间接地对植物的生长产生影响,并且会携带致病菌进入到植物中,比如在土壤中生活的昆虫—蚯蚓,它的粪便增加了土壤中大肠杆菌O157∶H7的含量[43];在羊牧场生活的鼻涕虫上发现了大肠杆菌O157∶H7的存在[44]。活着的线虫可以摄取大肠杆菌O157∶H7,可能是收获前水果蔬菜的致病菌的携带者[45-46]。
2 大肠杆菌O157 H7在农产品上的分布
大肠杆菌O157∶H7可以污染农产品有内因和外因,如致病菌的活动性、和其他微生物之间的相互影响、以及从植物体渗透出的营养物质[47-48]。细菌的活动性促进细菌进入植物的伤口、气孔以及其他开口中[49],这是大肠杆菌O157∶H7渗透到植物中的一个重要的因素。大肠杆菌O157∶H7与植物表面上其他微生物的相互作用可导致生物膜的形成,从而分布在植物表面,或者会内化到植物组织中[47]。
大肠杆菌O157∶H7通过和其他微生物之间相互作用形成生物膜而分布在农产品的表面。有报道[50]称在新鲜农产品表面上,许多菌细胞通过胞外的多糖聚集在一起而形成生物膜,生物膜可以保护细菌免受环境压力,包括在干燥和杀菌过程中的压力。研究[50]表明,在菠菜、生菜、大白菜、芹菜、韭菜、欧芹、莴苣这些蔬菜的叶子表面上都有生物膜的形成。在未受损伤的欧芹和菊苣叶上有10%~40%的菌与生物膜的形成有关,在4℃贮藏24 h未损伤的生菜和菠菜叶上,大肠杆菌O157∶H7仍然可以形成生物膜[51]。
对于被物理损伤的农产品来说,大肠杆菌O157∶H7可能会分布在伤口表面进而内化到植物当中。研究表明致病菌可能会存在于农产品表面的裂缝和植物在收割时的切口处,或者在去皮的时候污染可食部分,也可能通过茎的疤痕进入农产品内部并在其中生长[52]。Seo等[53]发现在被损伤的生菜叶表面的毛状体和气孔上的大肠杆菌O157∶H7比在完整叶子上生长的好。被损伤的苹果在48h后发现其上的大肠杆菌O157∶H7的数量比未损伤前多[54]。
大肠杆菌O157∶H7能感染到植物的表面并且会内化到生长的植物血管细胞中[55-57],Solomon等[56]用激光扫描显微镜技术和荧光显微镜技术,在菠菜幼苗的内部组织中观察到了大肠杆菌O157∶H7。研究称细菌经常会选择聚集在植物的毛状体、气孔周围和叶脉 上[47],原因可能是这些区域湿度较大,并且能浸出养分可以供细菌生长[58]。在相对湿度为100%时,大肠杆菌O157∶H7可以在未受损伤的阿拉伯芥表面生长,并且生长数量可以达到107CFU/g[49]。依附在植物表面的大肠杆菌O157∶H7可以通过植物的气孔从而内化到植物内部[59],可以内化到植物外表面下20~100 μm处[56],也可以进入到被切割的菠菜幼叶内部空腔的系统、松软叶肉的细胞间隙和血管组织中[60]。
但是研究发现致病菌内化到农产品中的现象是很少见的,会受到多种因素限制,如植物的种类和年龄、土壤的类型、生长的条件(水栽培或者土壤栽培)、接触污染源的部位(种子或者植物根、叶等)以及污染程度等因素[30,55,61-62]。在用含有大肠杆菌O157∶H7的营养液培育的生菜组织中没有发现该致病菌,但是生长在有大肠杆菌O157∶H7的土壤中的生菜上却发现了该菌[63]。Mootian等[31]发现在土壤、被污染的水和粪便中的大肠杆菌O157∶H7能转移到生菜的幼叶(生长12 d)或是成熟的叶子(生长30 d)上的量是很低的。一项研究表明被污染的菠菜种子发芽后,在120个完整的样品中只发现1个样品存在大肠杆菌O157∶H7的内化,而在成熟的植物(芽后生长49 d)没有发现大肠杆菌O157∶H7[62]。Brandl等[64]的研究表明幼叶中大肠杆菌O157∶H7的含量要比中叶和老叶中的含量高。一项研究关于菠菜的年龄和大肠杆菌O157∶H7污染之间关系的报告表明,在菠菜生长到3周的时候,大肠杆菌O157∶H7污染菠菜最严重,但是内化到菠菜中的大肠杆菌O157∶H7很少见[62]。
许多研究表明农产品会通过其根部系统而被污染[49,56,65-66]。土壤是污染农产品的主要来源之一,土壤中的致病菌可能会内化到植物蔬菜的侧根[49,67]。许多学者认为生菜会通过根部吸收大肠杆菌O157∶H7然后转移到可食部分[56-57]。Habteselassie等[68]在土壤、萝卜和生菜中追踪标记大肠杆菌O157∶H7,发现大肠杆菌O157∶H7会通过污染植物的根部,从而进入到植物的叶际等其他部位。
在绿色植物的叶子上,分布在远轴部位比分布在近轴部位的大肠杆菌O157∶H7存活的时间长并且存活的数量也多[29,69]。Erickson等[29]用含有大肠杆菌O157∶H7的灌溉水对生菜进行喷洒式浇灌,当增加水中的含菌量时,开始出现内化现象,在叶子远轴处出现的大肠杆菌O157∶H7量比在近轴处高,并且内化的大肠杆菌O157∶H7在叶子远轴处存活时间高达14 d,叶子近轴处存活时间也可以达到2 d。在含有103CFU/g或106CFU/g大肠杆菌O157∶H7的土壤中生长的生菜,在其叶和根部都没有发现内化的大肠杆菌[69-70]。但是根部系统生长在107CFU/g的土壤中时,17%的菠菜发现了内化现象[30]。Erickson等[16]的研究表明在土壤中通过植物根部内化的大肠杆菌O157∶H7很少见,如果存 在内化现象,7 d之后也会消失。Erickson等[29]在用含有大肠杆菌O157∶H7的水喷灌菠菜后,在菠菜的表面和内部组织中发现了大肠杆菌O157∶H7;但是在喷灌7 d后,所有菠菜叶子的内部组织都没有发现被污染。
3 结 语
污染农产品的大肠杆菌O157∶H7的来源可能是土壤、灌溉水、粪肥和昆虫等,大肠杆菌O157∶H7可以在土壤、灌溉水、粪肥中和新鲜农场品表面上存活很长时间。大量的研究表明,大肠杆菌O157∶H7在农产品上的分布与农产品的种类、培养方式、组织损伤、农产品的成熟程度和其他微生物的影响等因素有关。它经常会聚集在植物叶子的气孔、被损伤处或是在植物表面形成生物膜,也可能内化到植物组织中,内化现象可能与植物的损伤程度、成熟率等因素有关。充分掌握了农产品中大肠杆菌O157∶H7的来源及分布,可以更加有效地预防大肠杆菌O157∶H7给人类造成的危害。
参考文献:
[1] 陈君石. 我国食品安全问题的特点和应对措施[C]//中国毒理学会第五次全国学术大会论文集. 贵阳: 中国毒理学会, 2009.
[2] FERENS W A, HOVDE C J. Escherichia coli O157: H7: animal reservoir and sources of human infection[J]. Foodborne Pathogens and Disease, 2011, 8(4): 465-487.
[3] SANCHEZ S, MARTINEZ R, ALONSO J M, et al. Clinical and pathogenic aspects of infections due to Escherichia coli O157: H7 and other verocytotoxigenic E. coli[J] En fermedades Infecciosasy Microbiología Clínica, 2010, 28(6): 370-374.
[4] RAFFAELLI R M, PALADINI M, HANSON H, et al. Child careassociated outbreak of Escherichia coli O157: H7 and hemolytic uremic syndrome[J]. The Pediatric Infectious Disease Journal, 2007, 26(10): 951-953.
[5] HERMOS C R, JANINEH M, HAN L L, et al. Shiga toxin-producing Escherichia coli in children: diagnosis and clinical manifestations of O157: H7 and non-O157: H7 infection[J]. Journal of Clinical Microbiology, 2011, 49(3): 955-959.
[6] RILEY L W, REMIS R S, HELGERSON S D, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype[J]. New England Journal of Medicine, 1983, 308(12): 681-685.
[7] HARUO W, AKIHITO W, YOSHISHIGE I, et al. Outbreaks of enterohaemorrhagic Escherichia coli O157: H7 infection by two different genotype strains in Japan, 1996[J]. The Lancet, 1996, 348: 831-832.
[8] ARTHUR M W, DIEP H J, UMID S, et al. Multistate outbreak of Escherichia coli O157: H7 infection associated with consumption of packaged spinach, August–September 2006: the Wisconsin investigation[J]. Clinical Infectious Diseases, 2009, 48(8): 1079-1086.
[9] JULIANA G, ARON M W, ARTHUR W, et al. Spinach-associated Escherichia coli O157: H7 outbreak, Utah and New Mexico, 2006[J]. Emerging Infectious Diseases, 2008, 14(10): 1633-1636.
[10] 李毅, 章乐怡, 洪程基, 等. 温州市食品中肠出血性大肠杆菌O157∶H7污染状况调查[J]. 中国食品卫生杂志, 2012, 24(4): 369-371.
[11] 程孝连, 何泽民, 孟宪春, 等. 蚌埠地区2000—2010 年肠出血性大肠杆菌O157:H7感染状况的研究[J]. 安徽预防医学杂志, 2012, 18(1): 16-17.
[12] 王燕, 谢贵林, 杜琳. 大肠杆菌O157: H7感染流行概况[J]. 微生物学免疫学进展, 2008, 36(1): 51-58.
[13] U.S. Food and Drug Administration(FDA). Guidance for industry: guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables[EB/OL]. (2008-02-25). http://www.fda.gov/Food/ GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ ProducePlantProducts/ucm064458.htm
[14] DOYLE M P, ERICKSON M C. Summer meeting 2007: the problems with fresh produce: an overview[J]. Journal of Applied Microbiology, 2009, 105(2): 317-330.
[15] BEUCHAT L R. Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases[J]. British Food Journal, 2006(8): 38-53.
[16] ERICKSON M C, WEBB C C, DIAZ-PEREZ J C, et al. Infrequent internalization of Escherichia coli O157:H7 into field-grown leafy greens[J]. Journal of Food Protection, 2010, 73(3): 500-506.
[17] ISLAM M, DOYLE M P, PHATAK S C, et al. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water[J]. Food Microbiology, 2005, 22(1): 63-70.
[18] LINDEN I V, COTTYN B, UYTTENDAELE M, et al. Long-term survival of Escherichia coli O157:H7 and Salmonella enterica on butterhead lettuce seeds, and their subsequent survival and growth on the seedlings[J]. International Journal of Food Microbiology, 2013, 161(3): 214-219.
[19] WARRINER K F, IBRAHIM M, DICKINSON C, et al. Internalization of human pathogens within growing salad vegetables[J]. Biotechnology Genetic Engineering Reviews, 2003, 20(1):117-134.
[20] OLIVEIRA M, VINAS I, USALL J, et al. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contamination compost and irrigation water[J]. International Journal of Food Microbiology, 2012, 156(2): 133-140.
[21] GIRARDIN H, MORRIS C E, ALBAGNAC C, et al. Behavior of the pathogen surrogates Listeria innocua and Clostridium sporogenes during production of parsley in fields fertilized with contaminated amendments[J]. FEMS Microbiology Ecology, 2005, 54(2): 287-295.
[22] SBODIO A, MAEDA S, LOPEZ V G, et al. Modified Moore swab optimization and validation in capturing E. coli O157:H7 and Salmonella enterica in large volume field samples of irrigation water[J]. Food Research International, 2013, 51(2): 654 -662.
[23] AHMED W, SAWWANT S, HUYGENS F, et al. Prevalence and occurrence of zoonotic bacterial pathogens in surface waters determined by quantitative PCR[J]. Water Research, 2009, 43(19): 4918-4928.
[24] GANNON V P, GRAHAM T A, READ S, et al. Bacterial pathogens in rural water supplies in Southern Alberta, Canada[J]. Journal of Toxicology and Environmental Health, 2004, 67(20/22): 1643-1653.
[25] WANG Guodong, DOYLE M P. Survival of enterohemorrhagic Escherichia coli O157:H7 in water[J]. Journal of Food Protection, 1998, 61(6): 662-667.
[26] ARTIZ R R E, KILLHAM K. Survival of Escherichia coli O157:H7 in private drinking water wells: in fluences of protozoan grazing and elevated copper concentrations[J]. FEMS Microbiology Letters, 2002, 216(1): 117-122.
[27] SONG I, STINE S W, CHOI C Y, et al. Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation[J]. Journal of Environmental Engineering, 2006, 132(10): 1243-1248.
[28] SOLOMON E B, YARON S, MATHEWS K R. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization[J]. Applied and Environmental Microbiology, 2002, 68(1): 397-400.
[29] ERICKSON M C, WEBB C C, DIAZ-PEREZ J C, et al. Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water[J]. Journal of Food Protection, 2010, 73(7): 1023-1029.
[30] MITRA R, CUESTA A E, WAYADANDE A, et al. Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in spinach[J]. Journal of Food Protection, 2009, 72(10): 1521-1530.
[31] MOOTIAN G, WU Wenhuanu, MATTHEWS K. R. Transfer of Escherichia coli O157:H7 from soil, water, and manure contaminated with low numbers of the pathogen to lettuce plants[J]. Journal of Food Protection, 2009, 72(5): 2308-2312.
[32] PATEL J, MILLNER P, NOU X, et al. Persistence of enterohaemorrhagic and non pathogenic E. coli on spinach leaves and in rhizosphere soil[J]. Journal of Applied Microbiology, 2010, 108(5): 1789-1796.
[33] WANG Guodong, ZHAO Tao, DOYLE M P. Fate of enterohemorrhagic Escherichia coli O157∶H7 in bovine feces[J].Applied and Environmental Microbiology, 1996, 62(7): 2567-2570.
[34] KUDVA I T, BLANCH K, HOVDE C J. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry[J]. Applied and Environmental Microbiology, 1998, 64(9): 3166-3174.
[35] DOYLE M P, ERICKSON M C. Reducing the carriage of foodborne pathogens in livestock and poultry[J]. Poultry Science, 2006, 85(6): 960-973.
[36] BACH S J, MCALLISTER T A, VEIRA D M, et al. Transmission and control of Escherichia coli O157:H7: a review[J]. Canadian Journal of Animal Science, 2002, 82(4): 475-490.
[37] AHMAD A, NAGARAJA T, ZUREK L. Transmission of Escherichia coli O157:H7 to cattle by house flies[J]. Preventive Veterinary Medicine, 2007, 80(1): 74-81.
[38] TALLEY J L, WAYADANDE A C, WASALA L P, et al. Association of Escherichia coli O157:H7 with filth flies(muscidae and calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae)[J]. Journal of Food Protection, 2009, 72(7): 1547-1552.
[39] de JESÐS A J, OLSEN A R, BRYCE J R, et al. Quantitative contamination and transfer of Escherichia coli from foods by houseflies, Musca domestica L. (Diptera: Muscidae)[J]. International Journal of Food Microbiology, 2004, 93(2): 259-262.
[40] SELA S, NESTEL D, PINTO R, et al. Mediterranean fruit fly as a potential vector of bacterial pathogens[J]. Applied and Environmental Microbiology, 2005, 71(7): 4052-4056.
[41] JANISIEWICZ W J, CONWAY W S, BROWN M W, et al. Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its potential for transmission by fruit flies[J]. Applied and Environmental Microbiology, 1999, 65(1): 1-5.
[42] ERICKSON M C, JEAN L, ALISON S P, et al. Preharvest internalization of Escherichia coli O157:H7 into lettuce leaves, as affected by insect and physical damage[J]. Journal of Food Protection, 2010, 73(10): 1809-1816.
[43] WILLIAMS A P, ROBERTS P, AVERY L M, et al. Earthworms as vectors of Escherichia coli O157:H7 in soil and vermincomposts[J]. FEMS Microbiology Ecology, 2006, 58(1): 54-64.
[44] SPROSTON E L, MACRAE M, OGDEN I D, et al. Slugs: potential novel vectors of Escherichia coli O157[J]. Applided and Environmental Microbiology, 2006, 72(1): 144-149.
[45] KENNEY S J, ANDERSON G L, WILLIAMS P L, et al. Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes[J]. International Journal of Food Microbiology, 2005, 101(2): 227-236.
[46] KENNENY S J, ANDERSON G L, WILLIAMS P L, et al. Migration of Caenorhabditis elegans to manure and manure compost and potential for transport of Salmonella Newport to fruits and vegetables[J]. International Journal of Food Microbiology, 2006, 106(1): 61-68.
[47] ARUSCAVAGE D, LEE K, MILLER S, et al. Interactions affecting the proliferation and control of human pathogens on edible plants[J]. Journal of Food Science, 2006, 71(8): 89-99.
[48] FRANK J E. Microbial attachment to food and food contact surfaces[J]. Advance in Food Nutrition Research, 2001, 43(8): 319-370.
[49] COOLEY M B, MILLER W G, MANDRELL R E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae[J]. Applied and Environmental Microbiology, 2003, 69(8): 4915-4926.
[50] MORRIS C E, MONIER J M. The ecological significance of biofilm formation by plant associated bacteria[J]. Annual Review of Phytopathology, 2003, 41(1): 429-453.
[51] OLMEZ H, TEMUR S D. Effects of different sanitizing treatments on biofilms and attachment of Escherichia coli and Listeria monocytogenes on green leaf lettuce[J]. LWT-Food Science and Technology, 2010, 43(6): 964-970.
[52] U.S. Food and Drug Administration (FDA). Guidance for industry: guide to minimize microbial food safety hazards of melons[EB/OL]. (2009-07).
[53] SEO K H, FRANK J F. Attachment of Escherichia coli O157:H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment[J]. Journal of Food Protection, 1999, 62(1): 3-9.
[54] DINGMAN D W. Growth of Escherichia coli O157:H7 in bruised apple (Malus domestica) tissue as influenced by cultivar, date of harvest, and source[J]. Applied and Environmental Microbiology, 2000, 66(3): 1077-1083.
[55] SOLOMON E B, BRANDL M T, MANDRELL R E. Microbiology of fresh produce [M]. Washington: ASM, 2006: 55-83.
[56] SOLOMON E B, YARON S, MATTHEWS K R. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization[J]. Applied and Environmental Microbiololoy, 2002, 68(1): 397-400.
[57] WACHTEL M R, WHITEHAND L C, MANDRELL R E. Prevalence of Escherichia coli associated with a cabbage crop inadvertently irrigated with partially treated sewage wastewater[J]. Journal of Food Protection, 2002, 65(5): 471-475.
[58] BRANDL M T, MANDRELL R E. Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere[J]. Applied and Environmental Microbiology, 2002, 68(7): 3614-3621.
[59] TAKEUCHI K, FRANK J F. Penetration of Escherichia coli O157:H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability[J]. Journal of Food Protection, 2000, 63(7): 434-440.
[60] SALDANA Z, SANCHEZ E, XICOHTENCATL C J, et al. S urface structures involved in plant stomata and leaf colonization by Shigatoxigenic Escherichia coli O157:H7[J]. Frontiers in Microbiology, 2011(9): 1-9.
[61] DELAQUIS P, BACH S, DINU L D. Behavior of Escherichia coli O157:H7 in leafy vegetables[J]. Journal of Food Protection, 2007, 70(9): 1966-1974.
[62] PU S, BEAULIEU J C, PRINYAWIWATKUL W, et al. Effects of plant maturity and growth media bacterial inoculum level on the surface contamination and internalization of Escherichia coli O157:H7 in growing spinach leaves[J]. Journal of Food Protection, 2009, 72(8): 2313-2320.
[63] FRANZ E, DIEPENINGEN A D, DEVOS O J, et al. E ffects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce[J]. Applied and Environmental Microbiology, 2005, 71(10): 6165-6174.
[64] BRANDL M T, AMUNDSON R. Leaf age as a risk factor in the contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica[J]. Applied and Environmental Microbiology, 2008, 74(8): 2298-2306.
[65] COOLEY M B, CHAO D, MANDRELL R E. E scherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria[J]. Journal of Food Protection, 2006, 69(10): 2329-2335.
[66] GAGLIARDI J V, KARNS J S. Persistence of Escherichia coli O157:H7 in soil and on plant roots[J]. Environmental Microbiology, 2002, 4(8): 89-96.
[67] DONG Y, INIGUEZ A L, AHMER B M M, et al. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula[J]. Applied Environmental Microbiology, 2003, 69(3): 1783-1790.
[68] HABTESELASSIE M Y, BISCHOFF M, APPLEGATE B, et al. Understanding the role of agricultural practices in the potential colonization and contamination by Escherichia coli in the rhizospheres of fresh produce[J]. Journal of Food Protection, 2010, 73(11): 2001-2009.
[69] ZHANG Guodong, MA Li, BEUCHAT R L, et al. Lack of internalization of Escherichia coli O157∶H7 in lettuce(Lactuca sativa L.) after leaf surface and soil inoculation[J]. Journal of Food Protection, 2009, 72(10):2028-2037.
[70] ZHANG Guodong, MA Li, BEUCHAT L R, et al. H eat and drought stress during growth of lettuce (Lactuca sativa L.) does not promote internalization of Escherichia coli O157∶H7[J]. Journal of Food Protection, 2009, 72(12): 2471-2475.
Research Progress in Sources and Distribution of Escherichia coli O157:H7 in Agricultural Products
SHAN Shan, LAI Wei-hua*, CHEN Ming-hui, CUI Xi
(State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China)
Foodborne diseases happened frequently due to food contamination from Escherichia coli O157:H7 (E. coli O157:H7) in recent years. Agricultural products may be infected with E. coli O157:H7 during the growth period. Therefore, understanding the sources and distribution of E. coli O157:H7 in agricultural products is beneficial for preventing the infection of products. In this paper, possible sources and general distribution of E. coli O157:H7 in agricultural products are reviewed.
agricultural products; Escherichia coli O157:H7; source; distribution
TS201.3
A
1002-6630(2014)01-0289-05
10.7506/spkx1002-6630-201401057
2013-04-09
南昌大学食品科学与技术国家重点实验室自由探索课题(SKLF-ZZB-201307);南昌市科学技术局党外专家博士产学研合作专项(2012CYHDWSP001)
山珊(1989—),女,硕士研究生,研究方向为食品质量安全。E-mail:ncuskshanshan@163.com
*通信作者:赖卫华(1968—),男,教授,博士,研究方向为食品质量安全。E-mail:talktolaiwh@163.com