APP下载

探讨初中数学开放题的解题技巧

2014-03-22李亚红

中国校外教育(中旬) 2014年1期
关键词:解题技巧结论思维能力

李亚红

对于初中数学来说,常规题型在考试中所占的比重有所减小,相对应的,对于学生发散性思维能力要求相对较高的开放题越来越多的出现在考试题目中。因此,初中数学教师带领学生多研究开放题的解题技巧,对于提升学生对初中数学的常规题型的解题技巧也是很有帮助的。初中数学开放题解题技巧思维能力素质教育注重学生思维的扩展和能力的培养,对初中数学而言,与素质教育相对应的创新是开放题的出现,此类题目对于学生的基础知识、思维能力等都有较高的要求,探究此类题目的解题技巧,不仅能培养、提高学生的思维能力,对于提升学生对初中数学中常规题目的解题技巧也有很大的帮助。

一、什么是数学开放题

数学开放题,其实就是开放性的数学问题,开放性问题最大的特点就是答案不唯一,促使学生发散思维,多方面的思考问题。因为初中生对于数学知识的学习相对较少,深度也相对较浅,所以初中数学开放题还是有一定的限制的,初中数学开放题一般是这样定义的:问题的条件设置不完整,或者是其可以得出多种的结论,即结论具有不确定性,需要学生运用所学的知识,进行观察、分析、猜想,从而能够完善问题条件或得出确定的结论。

二、数学开放题的特点

数学开放题作为应国家素质教育而生的产物,其对学生对于知识运用的熟练程度和学生思维能力的要求很高。数学开放题具有新颖性、多样性、发散性等特点。特别是多样性,数学开放题存在着由易到难的各种各样的题目,其可以考察的知识点也很多,像是函数、几何、方程等,这些都是可以设计数学开放题的知识点内容。简单的函数方面的数学开放题:写出一个图像经过点(-1,1)的函数关系式。这道问题看似简单,但是其以小见大,考察了学生关于函数知识的问题,这个题目学生的答案可以是一次函数、二次函数或是反比例函数等。

三、把握数学开放题的常见类型

由于初中生对于数学学习的知识面还不够宽泛,深度也相对较浅,分析其特点,初中数学开放题大都分为两类,一类是条件不完整的条件开放类,另一类是结论不具确定性、唯一性的结论开放类。

条件开放类,条件开放类的数学开放题在出题时,往往会给出确定的结论和不完整的条件,此类题目需要学生分析可以得出此结论的条件,但是此条件还要受到其他已给出的条件的限制。此类问题要求学生具有逆向思维的能力,善于探索。如在多项式1+4x2中添加一个单项式,使这个多项式成为一个完全平方式。这个题目就是典型的条件开放类的数学开放题。

结论开放类,结论开放类的数学开放题在出题时,会让学生根据已给出的条件,写出符合条件的结论,通常这个结论都是不确定的、不唯一的,学生给出的答案也是多种多样的。此类问题考察的是学生对于知识掌握的熟练程度和其发散性的思维能力,像上文有关函数的数学开放题,就是一道结论开放类的数学开放题。

四、数学开放题的教学方法

针对数学开放题新颖性的特点,我们要从数学开放题的基本出发,使学生认识、了解此类题目,把握此类题目的解题规律。教师在教学过程中,要首先为学生分析此类题目,使学生充分认识、了解此类新的题型,才能在以后的教学中培养学生的思维能力,提升初中数学开放题的解题技巧。

数学开放题涉及知识点的范围较广,综合性较强。教师在教学过程中,要注意锻炼学生对于知识点的熟练运用,但是,对于单一知识点的掌握是不能满足数学开放题的解决条件。综合性知识的掌握和运用,才能满足数学开放题解决的基本条件,在满足这一条件的基础上,分析题目,对涉及的知识归纳简化,然后再进行探索证明,从而为解决数学开放题奠定基础。

数学开放题还具有发散性的特点,针对这一特点,教师就要注意在日常的教学训练、培养学生多方面思考的习惯和能力,才能适应和习惯数学开放题,提升自身对于初中数学开放题的解题技巧。例如,上文所提到的“在多项式1+4x2中添加一个单项式,使这个多项式成为一个完全平方式。”这个题目考察的是完全平方式a2±2ab+b2=(a±b)2,所添加的单项式可以是多项式中的首项、中间项或是末项,学生可以根据平方式公式的中间项2ab来直接判断,从而得出结论。

五、数学开放题的解题技巧

对于条件开放类的数学开放题,像上文所述,此类题目一般都是给定结论,通过结论来让学生探索应给与的条件。此类题目通常都是从结论出发,逆袭思考问题,假设、猜测出条件,得出条件后一定要对题目中的结论进行验证,验证所假设的条件是否正确。此类题目通常简单,但“陷阱”较多,学生做此类题目时一定要仔细,切不可因为题目的简单而掉以轻心,把应得的分丢掉。

对于结论开放类的数学开放题,由于条件都已给出,学生可根据常规题目的做法,由给出的条件开始探究,逐步得出结论,由于结论通常都是不确定的、不唯一的,探究过程中必然存在假设,所以在得出最后结论时,一定要再次从条件开始验证,保证结论符合条件。

解题方法多样的数学开放题,此类数学开放题的思考方式和解题方法是多样的,也就是通常所说的“一题多解”,对于此类题目,切忌以课本内容生搬硬套,学生在解题时要注意灵活性,要积极思考,敢于大胆创新。

类别类的数学开放题,此类数学开放题通常需要根据已给的结论得出新的所需的结论。这类题目还是出现过的,比如,“已知等边△ABC和点P,设点P到△ABC三边的距离分别为h1、h2、h3,△ABC的高为h。此时,若点P是AB上的点,此时h1=0,可得结论h1+h2+h3 =h。利用这一结论,试着解决:当点P在△ABC内,点P在△ABC外两种情况时,结论是否还成立?若成立,请给予证明;若不成立,那么h1、h2、h3 与h的关系又如何呢?(不需证明)。”

再一类就是归纳型的数学开放题,这类题目要根据已有的规律探讨最终的结论。这类题目多运用的是数学数列知识,这一知识点为高中所需要学习的知识内容,教师可根据班级学生的具体情况进行讲解。

上述几类是特殊数学开放题中已出现过的问题,但是初中数学开放题绝不是只有这几种,具体的题目还需教师根据实际情况分析,本文就不再多做介绍了。

六、数学开放题的价值和意义

数学开放题新颖性、多样性和发散性的特点,对培养、提高学生的发散性思考和思维能力有很大的帮助,其应教育改革而生,对提高学生素质,培养学生能力也具有一定的实际意义。数学开放题运用的知识点范围广,可以促进学生对于知识点的熟练掌握,锻炼学生在解决具体题目时对所学知识内容的归纳简化,同时也可以让学生接触到更高层次的数学知识内容,对学生以后的数学学习奠定一定的基础。

教师也可以在数学开放题的教学过程中,提高自己的教学水平,丰富自身的教学经验,使得教师和学生共同成长、进步。

参考文献:

[1]张凤云.中国教育创新.2010.

[2]殷惠琴.初中数学开放题教学初探[J].文理导航(下旬),2012,(07).

[3]郜昌民.初中数学开放题教学策略举隅[J].新课程研究,2010,(07).

[4]义务教育数学课程标准[M].北京:北京师范大学出版社,2012.

[5]张奠宙,宋乃庆.数学教学概论(第二版)[M].北京:高等教育出版社,2009.endprint

猜你喜欢

解题技巧结论思维能力
由一个简单结论联想到的数论题
圆锥曲线的解题技巧知多少
立体几何中的一个有用结论
培养思维能力
初中语文阅读理解解题技巧初探
培养思维能力
初中记叙文阅读解题技巧探讨
结论
惊人结论