白藜芦醇对C3H10T1/2间质干细胞成骨分化及CXCL12、EGFR和CCL2基因表达的影响
2014-01-18左长清钟月春汪宗桂
左长清 钟月春 汪宗桂 戴 忠 吴 铁
1.广东医学院药理学教研室,广东东莞 523808;2.广东医学院生物化学教研室,广东东莞 523808
骨质疏松症是世界范围内的常见病、多发病。 促进间质干细胞成骨定向分化与成熟是治疗骨质疏松症的新的有效手段。白藜芦醇是一种含有芪类结构非黄酮类多酚化合物,具有促进间质干细胞向成骨细胞方向分化,并抑制间质干细胞向脂肪细胞分化潜能[1],但白藜芦醇促成骨分化机制尚未完全阐明。
间质干细胞成骨分化是一个非常复杂的生物过程[2],涉及到多基因、多信号通路组成的复杂基因调控网络。 笔者前期通过网络生物学方法研究发现CXCL12、EGFR 和CCL2 基因在重组人骨形成蛋白2(rhBMP-2)成骨分化网络中处于中心节点[3]。 本文应用C3H10T1/2 间质干细胞培养体系, 观察白藜芦醇对rhBMP-2 促成骨分化作用及对CXCL12、EGFR 和CCL2 基因表达的影响。
1 材料与方法
1.1 材料
小鼠间质干细胞C3H10T1/2 购自中国科学院上海细胞库。白藜芦醇(Sigma),rhBMP-2(Human Zyme),napthol AS-MX phosphate 和Fast Blue BB salt(Sigma),TRIzol(Invitrogen),RT-PCR Kit(TaKaRa),CCK-8(Dojindo)。
1.2 实验方法
1.2.1 CCK-8 法检测药物对细胞增殖功能的影响C3H10T1/2 细胞生长至80%融合,用含0.25%胰酶的消化液消化,制成细胞悬液,以3000 个细胞/孔接种于96 孔板内,37℃5%CO2培养箱中培养。 24 h 细胞贴壁后,更换含不同浓度白藜芦醇(分别为0、5、10、20、40、80、100 μmol/L) 的DMEM 培养液100 μL,细胞继续培养48 h 后, 每孔加入10 μL CCK-8 溶液,培养箱中孵育2 h,以多功能酶标仪读取波长450 nm处的OD 值。 按下述公式计算细胞的生长抑制率:细胞生长抑制率(%)=(1-用药组平均吸光度/对照组平均吸光度)×100% 。
1.2.2 碱性磷酸酶染色鉴定成骨分化 C3H10T1/2 接种于24 孔板中,细胞生长至约90%融合,实验分为三组:空白对照组、300 ng/mL rhBMP-2 组、20 μmol/L白藜芦醇+300 ng/mL rhBMP-2 组,每3 天更换1 次培养基。当成骨诱导分化6 d 后,单层细胞用PBS 清洗2次,然后用体积分数为0.70 乙醇室温固定15 min,采用含0.1 mg/mL napthol AS-MX phosphate 和0.6 mg/mL Fast Blue BB salt 染色液避光染色30 min, 用蒸馏水漂洗细胞3 次,倒置显微镜下观察并拍照记录。
1.2.3 实时荧光定量PCR 法检测CXCL12、EGFR 和CCLl2 mRNA 的表达 C3H10T1/2 细胞接种至12 孔细胞培养板,20 μmol/L 白藜芦醇处理48 h 后,Trizol 法提取细胞总RNA,经PrimeScriptTMRT reagent Kit 逆转录反应制备cDNA,real time PCR 检测CXCL12、EGFR和CCL2 mRNA 的表达,采用GAPDH 基因作为内参照,引物序列见表1。 采用2-ΔΔCt表示基因相对表达水平。
表1 定量RT-PCR 引物序列
1.3 统计学方法
应用SPSS 13.0 统计学软件进行数据分析, 计量资料数据用均数±标准差(±s)表示,多组间比较采用单因素方差分析, 组间两两比较采用LSD-t 检验,以P < 0.05 为差异有统计学意义。
2 结果
2.1 白藜芦醇对细胞生长的影响
白藜芦醇在低剂量组(5、10、20 μmol/L)对C3H10T1/2间质干细胞生长没有明显影响, 既不能促进细胞生长,同时对细胞生长也没有明显的抑制作用,随着剂量增大至40 μmol/L 时,白藜芦醇对细胞产生明显的生长抑制作用,当剂量达到80~100 μmol/L 时,生长抑制率达到84%。表明高剂量的白藜芦醇具有明显的细胞毒性。 因此,后续实验采用20 μmol/L 白藜芦醇。见表2。
表2 不同浓度白藜芦醇对C3H10T1/2 间质干细胞增殖的影响(±s,n = 4)
表2 不同浓度白藜芦醇对C3H10T1/2 间质干细胞增殖的影响(±s,n = 4)
注:与0 μmol/L 比较,**P < 0.05;“-”表示基本无抑制,未计算该数据
?
2.2 白藜芦醇对rhBMP-2 促成骨分化影响
C3H10T1/2 间质干细胞经成骨诱导分化6 d 碱性磷酸酶染色显示: 空白对照组细胞未见蓝紫色;300 ng/mL rhBMP-2 组细胞呈蓝紫色, 提示rhBMP-2能诱导间质干细胞早期成骨定向分化; 而300 ng/mL rhBMP-2+20 μmol/L 白藜芦醇组ALP 阳性细胞数明显增多,且ALP 颜色增深。 表明非毒性剂量下,20 μmol/L 白藜芦醇能增强rhBMP-2 促成骨分化作用。 见图1。
图1 C3H10T1/2 间质干细胞成骨诱导6 d 碱性磷酸酶染色
2.3 白藜芦醇对CXCL12、EGFR 和CCL2 mRNA 表达的影响
前期笔者通过网络生物学对rhBMP-2 诱导C3H10T1/2 成骨分化基因表达谱进行分析, 结果发现,CXCL12、EGFR 和CCL2 基因在rhBMP-2 成骨分化网络中处于中心节点。为了鉴定白藜芦醇促成骨分化作用是否通过影响rhBMP-2 成骨分化网络, 本研究用20 μmol/L 白藜芦醇处理C3H10T1/2 细胞48 h后,观察上述基因表达水平。 结果表明:白藜芦醇处理组CXCL12、EGFR 和CCL2 表达水平分别为 (1.02±0.09)、(1.03±0.05)、(1.10±0.11),与对照组相比,差异无统计学意义(P > 0.05)。 见图2。
图2 白藜芦醇对C3H10T1/2 细胞CXCL12、EGFR 和CCL2 mRNA表达的影响
3 讨论
rhBMP-2 是一种被FDA 批准的重要促成骨药物,目前已在临床尤其是整形外科领域广泛使用[4]。众多研究表明,rhBMP-2 具有非常明显的促进间质干细胞、 前体成骨细胞骨向分化作用[5-7]。 本研究采用300 ng/mL rhBMP-2 作用C3H10T1/2 间质干细胞6 d,ALP 染色表明,rhBMP-2 能诱导C3H10T1/2 间质干细胞早期成骨分化,与前述研究结果一致。
系统生物网络揭示: 复杂疾病不能通过干预单一靶点而奏效, 必须通过干扰疾病生物网络多个关键节点。 研究药物干扰疾病网络,形成了药理学一个新兴的分支——网络药理学或网络生物学[8-9]。 前期笔者通过网络生物学方法对rhBMP-2 诱导C3H10T1/2 成骨分化基因表达谱进行分析, 结果发现,CXCL12、EGFR 和CCL2 基因在rhBMP-2 成骨分化网络中处于中心节点。 目前已经证明EGFR 信号参与骨原始细胞群维持、成骨分化平衡调控[10],同时与前体成骨细胞活性和增殖[11]相关。而CXCL12 信号参与骨形成和骨吸收调控[12]。 最近表明BMP-9 诱导间质干细胞成骨分化早期和中期,CXCL12 信号轴发挥重要作用[13]。
综观目前国内外研究进展, 关于白藜芦醇促成骨作用机制主要涉及到ERK1/2 信号通路[14]、WNT 信号通路[15],同时通过激活Sirt1/Runx2[16]或者抑制PPAR2活性,从而抑制干细胞成脂分化,促进成骨分化[1]。 但是,间质干细胞成骨分化涉及到多基因、多信号通路组成的复杂基因调控网络, 白藜芦醇在整个成骨分化复杂生物网络中起到怎样的调控作用, 目前知之甚少。本研究采用20 μmol/L 白藜芦醇联合rhBMP-2作用C3H10T1/2 细胞, 结果表明白藜芦醇具有促进rhBMP-2 的成骨诱导作用。 进一步分析白藜芦醇对rhBMP-2 成骨分化网络中心节点CXCL12、EGFR 和CCL2 的影响,结果表明白藜芦醇对上述基因表达没有明显的作用。 这说明白藜芦醇促成骨分化作用可能不是通过调控CXCL12、EGFR 和CCL2 网络接点来实现。分析原因可能是:①在BMP-2 成骨分化网络中,存在其他重要节点,白藜芦醇可能通过影响其他网络节点发挥作用; ②笔者仅仅分析了rhBMP-2 促成骨蛋白互作网络, 对于rhBMP-2 更加复杂的转录调控网络,由于需要更多时间点基因芯片数据,没有进行分析;③成骨分化是一个动态的时续过程,网络节点也会根据分化程度发生部分时续改变。
综上, 本研究证明低剂量白藜芦醇能增强rhBMP-2 成骨分化作用,在临床上,可以联合应用增强疗效, 同时对白藜芦醇作用进行了初步网络分析。随着研究深入,芯片数据量的增加,技术成熟,可以进一步对转录调控网络、时续动态网络进行分析,从而进一步解析白藜芦醇促成骨分化机制。[1] Backesja CM,Li Y,Lindgren U,et al. Activation of Sirt1 Decreases Adipocyte Formation during Osteoblast Differentiation of Mesenchymal Stem Cells [J]. Cells Tissues Organs,2009,189(1-4):93-97.
[2] Chau JF,Leong WF,Li B. Signaling pathways governing osteoblast proliferation,differentiation and function [J].Histol Histopathol,2009,24(12):1593-1606.
[3] 左长清,汪宗桂,钟月春,等.重组人BMP-2 诱导C3H10T1/2 间质干细胞定向成骨分化早期基因表达谱分析[J].中国医药导报,2014,11(4):25-28.
[4] Kim HK,Oxendine I,Kamiya N. High-concentration of BMP2 reduces cell proliferation and increases apoptosis via DKK1 and SOST in human primary periosteal cells [J].Bone,2013,54(1):141-150.
[5] Yang G,Yuan G,Li X,et al. BMP-2 induction of Dlx3 expression is mediated by p38/Smad5 signaling pathway in osteoblastic MC3T3-E1 cells [J]. J Cell Physiol,2014,229(7):943-954.
[6] Lee HL,Park HJ,Kwon A,et al. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation [J]. Exp Cell Res,2014,323(2):276-287.
[7] Mikami Y,Asano M,Honda MJ,et al. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells [J]. J Cell Physiol,2010,223(1):123-133.
[8] Hopkins AL. Network pharmacology: the next paradigm in drug discovery [J]. Nat Chem Biol,2008,4(11):682-690.
[9] 潘家祜.基于网络药理学的药物研发新模式[J].中国新药与临床杂志,2009,28(10):721-726.
[10] Zhu J,Shimizu E,Zhang X,et al. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix [J]. J Cell Biochem,2011,112(7):1749-1760.
[11] Chandra A,Lan S,Zhu J,et al. Epidermal growth factor receptor(EGFR)signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2(EGR2)expression [J]. J Biol Chem,2013,288(28):20488-20498.
[12] Shahnazari M,Chu V,Wronski TJ,et al. CXCL12/CXCR4 signaling in the osteoblast regulates the mesenchymal stem cell and osteoclast lineage populations[J].FASEB J,2013,27(9):3505-3513.
[13] Liu C,Weng Y,Yuan T,et al.CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells [J]. Int J Med Sci,2013,10(9):1181-1192.
[14] Dai Z,Li Y,Quarles LD,et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation [J]. Phytomedicine,2007,14(12):806-814.
[15] Zhou H,Shang L,Li X,et al. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells [J].Exp Cell Res,2009,315(17):2953-2962.
[16] Shakibaei M,Shayan P,Busch F,et al. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation[J].PLoS One,2012,7(4):e35712.