APP下载

源于大型真菌的小分子抗肿瘤化合物研究进展

2013-12-23王俊丽李会宣贾艳菊

天然产物研究与开发 2013年6期
关键词:孔菌细胞毒灵芝

刘 坤,王俊丽 ,李会宣,贾艳菊,杨 虹

1河北经贸大学生物科学与工程学院,石家庄050061;2 中央民族大学生命与环境科学学院,北京100081

大型真菌是一个古老的生物,种属繁多,据Hawksworth(2001)估计全球约有大型真菌150000种,被描述的约20000 种[1,2],我国大型真菌约1 万余种,已被描述的约3800-4000 种[3]。我国大型真菌的药用历史悠久,《神农本草经》和《本草纲目》均记载了真菌的药用价值,其中灵芝(Ganderma lucidum)、茯苓(Poria cocos)和猪苓(Grifola umbellata)等被用于癌症的治疗[4]。抗癌真菌的现代文献始于1903 年,对真菌抗肿瘤作用的大规模研究始于二十世纪60 年代[5,6],现已发现约650 种担子菌具有抗肿瘤活性[7]。真菌的抗肿瘤物可分为两大类,大分子物质和小分子物质,大分子物质主要是多糖和与蛋白相连的多糖,小分子主要有酚类化合物、聚酮类化合物、萜类化合物和甾体等,它们可进入细胞膜,作用于特定的代谢途径[4,8]。

1 抗肿瘤小分子化合物

1.1 萜类

1.1.1 单萜

Sontag 等[9]从圆瘤孢多孔菌(Bondarzewia montana)中分离得到的montadial A(1)是具细胞毒活性的单萜,它对小鼠淋巴性白血病细胞L1210 和早幼粒细胞性白血病细胞HL-60 的IC50(半数抑制浓度)分别为10 μg/mL 和5 μg/mL。

1.1.2 倍半萜

McMorris 等[10]从发光杯伞(Clitocybe illudens)中分离到未知的抗生素,后被鉴定为illudin M(2)和illudin S(3),它们对多种肿瘤细胞有非常好的抑制作用;其半合成的化合物acylfulvene(4)在体内的抑制作用大大提高;由illudin M 和illudin S 派生的illudin 毒素类似物HMAF(6-hydroxymethylacylfulvene)(5)可望成为一个新的抗癌药物,临床试验证明它对多种肿瘤细胞有效[11-13]。Stärk 等[14]从北方小香菇(Lentinellus ursinus)中分离出的倍半萜lentinellic acid(6)具有细胞毒活性。Lorenzen 等[15]从Panus sp.分离出了两个caryophyllane 型倍半萜naematolin(7)和naematolon(8),其中naematolon 的细胞毒活性是naematolin 的5 倍,naematolon 可通过抑制胸腺嘧啶加入到DNA 而抑制人食管癌细胞Eca-109 的增殖,其IC50值为2 μg/mL。Fabian 等[16]从Radulomyces confluens 中分离得到的倍半萜radulone A(9)有较强的抗肿瘤活性。Reina 等[17]从Coprinopsis episcopalis 中分离出了4 个有细胞毒作用的类似物:illudins I(10)、illudins I2(11)、illudins J(12)和illudins J2(13)。马文哲等[18]从网纹斑褶菇(Panaeolus retirugis)固体培养的菌丝体中分离出的paneolic acid(14)对HL-60 细胞显示一定的细胞毒活性,其IC50为18.9 μg/mL。Opatz 等[19]从Creolophus cirrhatus 中分出了五种norhirsutanes,被命名为creolophins A-E,其中creolophins E(15)和在纯化过程中合成的二聚体neocreolophin(16)具有细胞毒活力。王雅琪等[20]从金针菇(Flammulina velutipes)固体培养物中分离的倍半萜Enokipodin J(17)2,5-cuparadiene-1,4-dione(18),enokipodins B(19),enokipodins D(20)都有抗人肝癌细胞HepG2、人乳腺癌细胞 MCF-7、人肺癌细胞 A549、人胃癌细胞SGC7901 的活性,其IC50范围为22. 9~90. 9 μg/mL。

1.1.3 二萜

Mazura 等[21]从花脸香蘑(Lepista sordida)菌株发酵液分离出了二萜骨架化合物lepistal(21)和lepistol(22),lepistal 在浓度为0. 2 μg/mL 时,能使20%的HL-60 细胞分化为单核粒细胞及18%的人急性白血病细胞U 937 细胞分化为单核细胞;lepistol 在浓度为20 μg/mL 时能使30%的HL-60 细胞分化,在10 μg/mL 时能使14%的U 937 细胞分化。

1.1.4 三萜

陈春雄[22]从牛樟芝(Antrodia camphorata)中分离的化合物zhankuic acids A(23)和zhankuic acids C(24)对鼠白血病细胞P-388 的IC50为1.8 和5.4 μg/mL;zhankuic acids A、zhankuic acids C 和methyl antcinate B(25)对结肠癌、乳腺癌、肝癌和肺癌细胞株有特异细胞毒性,IC50范围为22.3~75.0 μM[23];另外Yeh 等[24]从樟芝中分出的antcin A(26)、antcin C(27)、dehydroeburicoic acid(28)、15a-Acetyldehydrosulphurenic acid(29)、eburicoic acid(30)和eburicol(31)对多种肿瘤细胞有抗性。Toth 等[25]报道从灵芝菌丝体中提取的具有细胞毒活性的三萜类化合物ganoderic acid W(32)、ganoderic acid X(33)和ganoderic acid Y(32~34),它们能明显抑制小鼠肝肉瘤(HTC)细胞的增殖;Lin 等[26]从灵芝子实体中分离到灵芝醛A(35)和双氢灵芝醛A(36),它们对人肝癌细胞PLC/PRE/5 和人口腔表皮样癌细胞KB 有较强的抑制作用,ED50(半数有效量)范围为1~11 μg/mL;Gao 等[27]从灵芝中分离出的lanostante 型三萜醛lucialdehydes A-C(37~39),对小鼠肺癌LLC 细胞株、小鼠纤维肉癌Meth-A 细胞株、人乳腺癌T-47D 细胞和肉瘤S-180 细胞株都有抑制作用,其中lucialdehydes C(39)的细胞毒活性最强,对4 种肿瘤细胞的ED50分别为10.7、4.7、7.1 和3.8 μg/mL;Tang 等[28]报道从灵芝中分离的ganoderic acid T(40)可造成线粒体功能的紊乱和p53 蛋白的表达,从而造成肺癌细胞95-D 的凋亡;Yue 等[29]报道从灵芝中分离的Ganoderic acid F、K、B、D 和AM1(41~45)可抑制人宫颈癌细CCL-2 增殖,其IC50分别为19. 5、15. 1、20. 3、17. 3 和19. 8 μM。Ukiya等[30]从茯苓中分出了3,4-secolanostane 型三萜poricoic acid G(46)和poricoic acid H(47),poricoic acid G 对HL-60 有显著的细胞毒活力,其GI50(半数生长抑制浓度)为39.3 μM。Handa 等[31]从桦褐孔菌(Inonotus obliquus)中分离了3 个三萜化合物spiroinonotsuoxodiol(48)、inonotsudiol A (49)和inonotsuoxodiol A(50),其中,spiroinonotsuoxodiol 为新骨架,这三种化合物对P388 细胞、L1210 细胞、HL-60细胞和KB 细胞都有一定的抗性。

1.2 甾体

Ohsawa 等[32]从猪苓中提取的polyporusterone A-G(51~57)对L1210 细胞有细胞毒活性,IC50范围为10~64 μg/mL,其中polyporusterone A 和polyporusterone B 对2,2'-偶氮二(2-脒基丙烷)二盐酸盐(AAPH)诱导红细胞的溶解有抑制作用[33]。Valisolalao 等[34]从彩绒革盖菌(Trametes versicolor)中分离出含有细胞毒活性的多氧麦角甾3β,5α,9α-trihydroxyergosta-7,22-dien-6-one(58)和3β,5α,9α-trihydroxy-6β-methoxyergosta-7,22-diene (59 )。 Mizushina 等[35]从灵芝中分离的cerevisterol(60)、Lucidenic acid O(61)和Lucidenic lactone(62)有抗肿瘤活性,化合物60 有抑制DNA 聚合酶α 的活性,61和62 有抑制DNA 聚合酶α 和β 的活性。从冬虫夏

草(Cordyceps sinensis)中分离的5,8-epidioxy-24(R)-methylcholesta-6,22-dien-3β-ol(63)、5,8-epidioxy-24(R)-methylcholesta-6,22-dien-3β-D-glucopyranoside(64)、5,6-epoxy-24(R)-methylcholesta-7,22-dien-3β-ol(65)有抗肿瘤活性[8,34,36]。从灰树花和巴西蘑菇(Agaricus blazei)中分离的ergosterol(66),从灰树花、树舌(Ganoderma applanatum)、新日本灵芝(Ganoderma neojaponicum)中分离的ergosta-4,6,8(14),22-tetraen-3-one(67)具有环化酶抑制作用[8,37,38],它们可通过激活半胱天冬酶而促进HepG2 细胞的凋亡[39]。

1.3 酚类和苯并吡喃酮类成分

Liberra 等[40]从柏树火焰层孔菌(Pyrofomes demidoffii)中分离出高度氧化的化合物fomecin A(48)和fomecin B(49),其中fomecin B 对HeLa 细胞和人羊膜FL 细胞有细胞毒活性,其IC50分别为20和7 μg/mL。丁智慧等[41]从地花菌(Albatrellus confluens)中提取分离到一个新骨架类型化合物Albaconol(50),它对人白血病细胞K562、人乳腺癌细胞Bcap-37、人胃癌细胞BGC-823 和A549 细胞的IC50分别为2.42、1.88、1.04 和1.18 μg/mL;在体外实验中,albaconol 在剂量为0.87、1.73 和3.46 mg/kg时对S180 的抑瘤率分别为28.2%、43.2%和47.4%,对小鼠肝癌H22 细胞的抑瘤率分别为15.6%、22.4%和37.8%[42]。莫顺燕等[43]从火木层孔菌(Phellinus igniarius)中分离的化合物hispolon(47)和桑黄素C(47)对MCF-7 细胞和人肝癌细胞BeL-7402 有较好的细胞毒活性,hispolon 对两种肿瘤细胞的IC50分别为5.57 和8.41 μg/mL,桑黄素C 对两种肿瘤细胞的IC50分别为4.55 和3.71 μg/mL。刘非燕等[44]从白黄粘盖牛肝菌(Suillus placidus)分离的Suillin(73)有诱导人类肝癌细胞株(HepG2、Hep3B、SK-Hep-1)、乳腺癌细胞(Bcap、MCF-7)、白血病细胞(K562)和结肠癌细胞(SW620)凋亡的活性,其IC50均小于10 μM。吴长生等[45]从鲍氏针层孔菌(Phellinus baumii)分离到化合物phellibaumins A-E(74~78)、interfungin B(79)、phelligridin H(80)、methylphelligrin(81)、epi-methylphelligrin A(82)、methylphelligrin B(83)、epi-methylphelligrin B(84)、phelligrin A(85)和epi-phelligrin A(86),它们有阻碍人前列腺癌细胞中核转录因子NF-κB 的活力,其IC50分别为52. 96、41. 40、62. 28 、74. 62、52.92、71.19、84.90、36.44(81 和82)、22.46(83 和84)、54.50(85 和86)μM。Ye 等[46]从地花菌中分离的grifolin(87)强烈抑制鼻咽癌细胞(CNE1、MCF-7)、HeLa 细胞、人结肠癌细胞(SW480)、白血病细胞(K562)、人淋巴瘤Raji 细胞和B95-8 细胞的生长,IC50分别为24、30、33、27、18、27 和24μM;grifolin可活化转录因子p53,上调DAPK1 表达,有效促进ERK1/2 与DAPK1 蛋白间相互作用,抑制ERK1/2的核积聚,诱导肿瘤细胞凋亡;grifolin 还可调节ERK1/2 激酶活性,靶向ERK1/2-DAPK1-p21 通路,活化p21,诱导肿瘤细胞G0/G1 期阻滞[47,48]。Song等[49]从假美牛肝菌(Boletus pseudocalopus)甲醇提取中分离了三个新grifolin 衍生物(89~90),它们对A549 细胞和小鼠黑色素瘤细胞B16F1 都有细胞毒活性,其IC50的范围是3.5~9.0 μg/mL。

1.4 醌类

Tringali 等[46,[50]从Sarcodon leucopu 分离出的对联三苯类化合物2',3'-diacetoxy-3,4,4″,5',6'-pentdhydroxy-p-terphenyl(91)具有抗KB 细胞活性,ED50为22 μg/mL。从贝壳状革耳菌(Panus conchatus)中分离的panepoxydone(92),从炭角菌(Xylaria strain)中分离的cycloepoxydon(93),从棒柄杯伞(Clitocybe clavipes)中分离的clavilactones CB(94)、clavilactones CD(95)和clavilactones CA(96),从双孢菇中分离的490 Quinone(97),从桦滴孔菌(Piptoporus betulinus)中分离的(E)-2-(4-hydroxy-3-methyl-2-butenyl)-hydroquinone(98),都有抗肿瘤活性[51]。

1.5 脂肪酸

Kawagishi 等[52]从猴头菇(Hericium erinaceus)中得到了一个新颖的脂肪酸,8-oxo-9,10-dihydroxy-9(Z)-octadecenoic acid(99),该化合物对Hela 细胞有抑制作用。Gao 等[53]从灵芝中分离的十九烷酸(100)和顺式-9-十九烯酸(101)有诱导HL-60 细胞凋亡的活性。

1.6 其他化合物

Takahashi 等[54]从黑斑绒盖牛肝菌(xerocomus nigromaculatus)中分离得到一种具有强抗肿瘤活性的化合物1-beta-D-arabinofuranosylcytosine(102),它对P388 细胞的IC50为0. 004 μg/mL。Takahashi等[55]从卷缘齿菌(Hydnum repandum)中分离的化合物repandiol(103)对多种肿瘤细胞具有细胞毒活力。Gehrt 等[56]从明亮松氏孔菌(Junghuhnia nitida)中分离出的nitidon(104)有细胞毒活性,并可在毫摩尔浓度使肿瘤细胞发生形态和生理上的改变,nitidon 在0.46 μM 可使25%-30%的HL-60 细胞成为类似粒-单核细胞集落形成细胞(granulocyte-monocyte-like cells),并使20%的U-937 细胞成为monocyte-like cells。Yoshkawa 等[57]从硫磺孔菌鸡冠变种(Laetiporus sulphureus var. miniatus)提取出egonol(105)、demethoxyegonol(106)和egonol glucoside(107),它们对人胃癌细胞Kato III 都表现出抗性,其IC50分别为28. 8、27. 5 和24. 9 μg/mL。León等[58]从谦逊栓菌(Trametes menziesii)中分离出了神经酰胺trametenamides A(108)和trametenamides B(109),乙酰化的trametenamides A 对人皮肤黑色素瘤细胞SK-MEL-1 有较好的细胞毒活力,IC50为8 μM,导致细胞凋亡的机制是DNA 断裂,多聚(ADP-核糖)聚合酶裂解和凋亡蛋白(procaspase-9 和procaspase-8)的增加。Clericuzio 等[59]从黄粘锈伞(Pholiota spumosa)中分离出的2-hydroxyputrescine-1,4-dicinnamamide(110)和pholiotic acid(111),都有一定的细胞毒活力。郑永标等[[60]从巴西革耳(Lentinus striguellus)中分离的striguellone A(112)有引起HeLa 细胞凋亡的活性,MTT 试验表明该化合物有较好的细胞毒活性,对HeLa 细胞的IC50为38.9 μM。Das 等[61]从冬虫夏草中分离的虫草素(3'-deoxyadenosine)(113)有抗肿瘤活性。

2 结语

综上所述,大型真菌中的多种小分子化合物具有抗瘤作用,因此,我们应加强小分子化合物的提取、分离和药理等研究,从中发现新的抗肿瘤活性物质,扩大药源。越来越多的真菌学家、化学家、药学家和医学家的加入将大大加快这一进程。高等真菌不仅可以直接用子实体作为研究材料,而且可以收藏菌种,很多种类可以发酵培养,一旦发现有应用价值的化合物,就有可能通过发酵解决工业化生产的资源来源问题。此外,与其他生物资源相比,大型真菌的研究工作相对较少,许多珍贵具有抗肿瘤活性的大型真菌的化学成分和生物活性研究还未被涉及,有待进一步研究和挖掘,且从大型真菌中寻找抗肿瘤活性化合物具有广阔的前景,有待深入研究。

1 Hawksworth DL.Mushrooms:the extent of the unexplored potential.Int J Med Mushrooms,2001,31:333-337.

2 Mueller GM Schmit JP. Fungal biodiversity:what do we know?What can we predict. Biodivers Conserv,2007,16:1-5.

3 Mao XL (卯晓岚).The Macrofungi in China (中国大型真菌). Zhengzhou:Henan Science and Technology Press,2000.1.

4 Mahajna J,et al.Pharmacological values of medicinal mushrooms for prostate cancer therapy:the case of Ganoderma lucidum.Nutr Cancer,2009,61:16-26.

5 Ren G (任刚).Studies on evaluation of antitumor-activity of polypores and the isolation,structure elucidation of and molecular mechanisms of apoptosis in HeLa induced by antitumor-active substance from Grifola Gigantea (Pers.)Karst.Hangzhou:Zhejiang University (浙江大学),PhD.2006.

6 Shen LL(沈玲玲),Huang XX (黄幸纤).Screening on the resources of antitumor fungi to be used as drug.Resource Development & Market (资源开发与市场),1997,13:203-205.

7 Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol,2002,60:258-274.

8 Zaidman BZ,et al.Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol,2005,67:453-468.

9 Sontag B,et al. Montadial A,a cytotoxic metabolite from Bondarzewia montana.J Nat Prod,1999,62:1425-1426.

10 McMorris TC Anchel M.The structures of the basidiomycete metabolites illudin S and illudin M. J Am Chem Soc,1963,85:831-832.

11 Kelner MJ,et al.Characterization of acylfulvene histiospecific toxicity in human tumor cell lines. Cancer Chemoth Pharm,1997,41:237-242.

12 Wiltshire T,et al.BRCA1 contributes to cell cycle arrest and chemoresistance in response to the anticancer agent irofulven.Mol Pharmacol,2007,71:1051-1060.

13 Anchel M,Hervey A Robbins WJ.Antibiotic substances from basidiomycetes VII.Clitocybe illudens.Proc Natl Acad Sci U S A,1950,36:300-305.

14 Stärk A,et al.Lentinellic acid,a biologically active protoilludane derivative from Lentinellus species (Basidiomycetes).Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1988,43:177-183.

15 Lorenzen K,et al.Two inhibitors of platelet aggregation from a Panus species (Basidiomycetes).Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1994,49:132-138.

16 Fabian K,et al. Five new bioactive sesquiterpenes from the fungus Radulomyces confluens (Fr.)Christ. Zeitschrift fur Naturforschung Teil C Biochemie Biophysik Biologie Virologie,1998,53:939-945.

17 Reina Ma,et al.Four illudane sesquiterpenes from Coprinopsis episcopalis.Phytochemistry,2004,65:381-385.

18 Ma WZ,et al.Two new biologically active illudane sesquiterpenes from the mycelial cultures of Panaeolus retirugis.J Antibiot,2004,57:721-725.

19 Opatz T,et al.The creolophins:a family of linear triquinanes from Creolophus cirrhatus (Basidiomycete). Eur J Org Chem,2007,33:5546-5550.

20 Wang Y,et al.Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice.Food Chem,2012,132:1346-1353.

21 Mazura X,et al. Two new bioactive diterpenes from Lepista sordida.Phytochemistry,1996,43:405-407.

22 Chen CH,et al. New steroid acids from Antrodia cinnamomea,a fungal parasite of Cinnamomum micranthum.J Nat Prod,1995,58:1655-1661.

23 Yeh CT,et al.Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells.Cancer Letters,2009,285:73-79.

24 Yeh CT,et al.Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells.Cancer Lett,2009,285:73-79.

25 O.Toth J,et al.Les ac ides ganoderiques tàz :triterpenes cytotoxiques de Ganoderma lucidum (Polyporacée). Tetrahedron Letters,1983,24:1081-1084.

26 Lin CN,et al.Novel Cytotoxic Principles of Formosan Ganoderma lucidum.J Nat Prod,1991,54:998-1002.

27 Gao JJ,et al.New triterpene aldehydes,lucialdehydes A—C,from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem Pharm Bull(Tokyo),2002,50:837-840.

28 Tang W,et al. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells.Life Sci,2006,80:205-211.

29 Yue QX,et al.Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine,2010,17:606-613.

30 Ukiya M,et al.Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos.J Nat Prod,2002,65:462-465.

31 Handa N,et al. An unusual lanostane-type triterpenoid,spiroinonotsuoxodiol,and other triterpenoids from Inonotus obliquus.Phytochemistry,2010,71:1774-1779.

32 Ohsawa T,et al.Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity. Chem Pharm Bull (Tokyo),1992,40:143-147.

33 Lee WY,et al.Cytotoxic activity of ergosta-4,6,8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus.Bulletin of the Korean Chemical Society,2005,26:1464-1466.

34 Valisolalao J,Luu B Ourisson G. Steroides cytotoxiques de Polyporus versicolor.Tetrahedron,1983,39:2779-2785.

35 Mizushina Y,et al. Lucidenic acid O and lactone,new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete,Ganoderma lucidum. Bioorg Med Chem,1999,7:2047-2052.

36 Rhee YH,et al.Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer,2012,doi:10.1186/1471-2407-12-28.

37 Zhang YJ,Mills GL Nair MG.Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem,2002,50:7581-7585.

38 Takaku T,Kimura Y Okuda H.Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action.J Nutr,2001,131:1409-1413.

39 Zhao YY,et al. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Bba-Gen Subjects,2011,1810:384-390.

40 Liberra K,et al.Fomecin B as a cytotoxic metabolite from the basidiomycete Tricholomopsis rutilans (Schaeff. ex. Fr.)Sing.Pharmazie,1995,50:370-371.

41 Ding ZH,Dong ZJ Liu JK.Albaconol,a novel prenylated resorcinol (=benzene-1,3-diol)from basidiomycetes Albatrellus confluens.Helvetica Chimica Acta,2001,84:259-262.

42 Liu MH,et al. Study on antitumor activity of albaconol extracted from Albatrellus confluens. Pharmacology and Clinics of Chinese Materia Medica (中药药理与临床),2005,21:14-16.

43 Mo SY.Chemical constituents of the medicinal fungus Phellinus Baumii.Beijing:Peking Union Medical College (中国协和医科大学),MSc.2003.

44 Liu FY,et al.Suillin from the mushroom Suillus placidus as potent apoptosis inducer in human hepatoma HepG2 cells.Chem Biol Interact,2009,181:168-174.

45 Wu CS,et al. Phenolic compounds with NF-κB inhibitory effects from the fungus Phellinus baumii. Bioorg Med Chem Lett,2011,21:3261-3267.

46 Ye M,et al. Grifolin,a potential antitumor natural product from the mushroom Albatrellus confluens,inhibits tumor cell growth by inducing apoptosis in vitro.FEBS Lett,2005,579:3437-3443.

47 Ye M,et al. Grifolin,a potential antitumor natural product from the mushroom Albatrellus confluens,induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett,2007,258:199-207.

48 Luo XJ,et al. Grifolin,a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells.Eur J Cancer,2011,47:316-325.

49 Song J,Manir MM Moon SS.Cytotoxic grifolin derivatives isolated from the wild mushroom Boletus pseudocalopus (Basidiomycetes).Chem Biodivers,2009,6:1435-1442.

50 Tringali C,et al. Previously unreported p-terphenyl derivatives with antibiotic properties from the fruiting bodies of Sarcodonleucopus (Basidiomycetes). A two-dimensional nuclear magnetic resonance study. Can J of Chem,1987,65:2369-2372.

51 Ferreira ICFR,et al. Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem,2010,10:424-436.

52 Kawagishi H,et al.A novel fatty-acid from the mushroom Hericium erinaceum.Agric Biol Chem,1990,54:1329-1331.

53 Gao P,et al. Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom).Fitoterapia,2012,83:490-499.

54 Takahashi A,et al. Isolation of 1-beta-D-arabinofuranosylcytosine from the mushroom Xerocomus nigromaculatus Hongo.Chem Pharm Bull,1992,40:1313-1314.

55 Takahashi A,Endo T Nozoe S. Repandiol,a new cytotoxic diepoxide from the mushrooms Hydnum repandum and H.repandum var.album.Chem Pharm Bull(Tokyo),1992,40:3181-3184.

56 Gehrt A,et al. Nitidon,a new bioactive metabolite from the basidiomycete Junghuhnia nitida (Pers.:Fr.) Ryv.Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1998,53:89-92.

57 Yoshkawa K,et al.A Benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus var. miniatus.Chem Pharm Bull (Tokyo),2001,49:327-329.

58 León F,et al.Isolation,structure elucidation,total synthesis,and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells. J Med Chem,2006,49:5830-5839.

59 Clericuzio M,et al.Non-phenolic dicinnamamides from Pholiota spumosa:isolation,synthesis and antitumour activity.Eur J Org Chem,2007,2007:5551-5559.

60 Zheng YB. Study on natural products from five edible and medicinal macrofungi. Shenzhen:Xiamen University (厦门大学),PhD.2008.

61 Das SK,et al.Medicinal uses of the mushroom Cordyceps militaris:Current state and prospects.Fitoterapia,2010,81:961-968.

猜你喜欢

孔菌细胞毒灵芝
桦褐孔菌的生物活性及其应用研究
春天来了
桦褐孔菌的研究现状及应用前景*
岗松中二氢黄酮的分离、绝对构型的确定及细胞毒活性
一株“灵芝”——一位贫困妇女的脱贫自述
广藿香内生真菌Daldinia eschscholzii A630次级代谢产物及其细胞毒活性研究
菌草灵芝栽培技术
微紫青霉菌次级代谢产物的化学成分和细胞毒活性
灵芝霜下秀
幽门螺杆菌细胞毒导致胃癌发生的作用机制