弱凸向量优化问题的最优性条件
2013-12-03王彩玲高慧岩
王彩玲, 高慧岩
(1. 吉林大学 数学学院, 长春 130012; 2. 北京中科金财科技股份有限公司, 北京 100083)
文献[1-6]利用抽象次微分对单目标规划问题进行了研究. 本文利用抽象次微分给出目标函数为弱凸函数的向量优化问题的最优性条件, 推广了文献[1-6]的结果.
1 抽象凸函数的概念
考虑如下多目标规划问题:
∀x∈Rn}.
∀x∈Rn}.
2 最优性条件
证明: 首先, 证明
其次, 证明
由于
(1)
又因为
(2)
(3)
[1] Jeyakumar V, Rubinov A M, WU Zhi-you. Sufficient Global Optimality Conditions for Non-convex Quadratic Minimization Problems with Box Constraints [J]. Journal of Global Optimization, 2006, 36(3): 471-481.
[2] Jeyakumar V, Rubinov A M, WU Zhi-you. Non-convex Quadratic Minimiation Problems with Quadratic Constraints: Global Optimality Conditions [J]. Mathematical Programming, 2007, 110(3): 521-541.
[3] WU Zhi-you, Jeyakumar V, Rubinov A M. Sufficient Conditions for Globally Optimality of Bivalent Nonconvex Guadratic Programs with Inequality Constraints [J]. Journal of Optimization Theory and Applications, 2007, 133(1): 123-130.
[4] WU Zhi-you. Sufficient Global Optimalty Conditions for Weakly Convex Minimizition Problems [J]. Journal of Optimization Theory and Application, 2007, 39(3): 427-440.
[5] Jeyakumar V, Rubinov A M, WU Zhi-you. Generalized Fenchel’s Conjugation Formulas and Duality for Abstract Convex Function [J]. Journal of Optimization Theory and Application, 2007, 132(3): 441-458.
[6] WU Zhi-you, Rubinov A M. Global Optimality Conditions for Some Classes of Optimization Problems [J]. Journal of Optimization Theory and Application, 2010, 145(1): 164-185.
[7] 林锉云, 董加礼. 多目标优化的方法与理论 [M]. 长春: 吉林教育出版社, 1992.
[8] Rubinov A M. Abstract Convexity and Global Opimization [M]. Dordencht: Kluwer Academic Publishers, 2000.
[9] WANG Cai-ling, GAO Hui-yan. Optimality Conditions of Multiobjective Programming Problerms Based on the Astract Convexity [J]. Journal of Jilin University: Science Edition, 2012, 50(4): 698-700. (王彩玲, 高慧岩. 抽象凸多目标规划的最优性条件 [J]. 吉林大学学报: 理学版, 2012, 50(4): 698-700.)