下面给出几个双边不等式.因为a,b>0任意,且每个平均都是对称的,所以不妨设a>b>0.
推论1 对任意a,b>0,a≠b,有
(5)
证明令x2=a/b>1,对
取对数再取导数,得
(6)
其中
计算得
得到.
推论2 对任意a,b>0,a≠b,有
(7)
其中常数1和4/π是最优的.
证明令x2=a/b>1,对
取对数再取导数,得
(8)
其中
计算得
得到.
推论3 对任意a,b>0,a≠b,有
H0(a,b)
其中常数1和2是最优的.
证明令x2=a/b>1,对
取对数再取导数,得
因此f3(x)对于任意x>1是严格递增的,推论3的结果由定理1和
得到.
推论4 对任意a,b>0,a≠b,有
(9)
其中常数2/π和1是最优的.
证明令x2=a/b>1,对
取对数再取导数,得
(10)
其中
计算得
得到.
[1]张小明,褚玉明.解析不等式新论[M].哈尔滨:哈尔滨工业大学出版社,2009.
ZHANGXiaoming,CHUYuming.Newdiscussiontoanalyticinequalities[M].Harbin:HarbinInstituteofTechnologyPress, 2009.
[2]NEUANE,SANDORJ.Companioninequalitiesforcertainbivariatemeans[J].AppoAnalDiscreteMath, 2009, 3(1):46-51.
[3]DUHongxia.Someinequalitiesforbivariatemeans[J].CommunKoreanMathSoc, 2009, 24(4):553-559.
[4]SEIFFERTHJ.Problem887[J].NieuwArchiefvoorWiskunde, 1993, 11(2):176-176.
[5]SEIFFERTHJ.Aufgabeβ16[J].DieWurzel, 1995, 29:221-222.
[6]JANOUSW.AnoteongeneralizedHeronianmean[J].MathIneqAppl, 2001, 3:369-375.
[7]GAOHongya,GUOJianling,YUWanguo.SharpboundsforpowermeanintermsofgeneralizedHeronianmean[J].AbstractandAppliedAnalysis, 2011, 2011:1-9.
[8]GAOHongya,GUOJianling.AninequalitybetweenthearithmeticandthesecondSeiffertmeans[J].ArtacticaJournalofMathematics, 2012, 9(1):19-22.
[9]GAOHongya,QINYanli.TheoptimalconvexcombinationboundsofcontraharmonicandarithmeticmeansforthesecondSeiffertmean[J].AntarcticaJournalofMathematics, 2012, 9(7):575-580.
[10]高红亚,乔金静.微分形式障碍问题解的正规性[J].河北大学学报:自然科学版,2011,31(5):1-5.
GAOHongya,QIAOJinjing.Reguearityforsolutionstoobstacteprobtemsfordifferentialforms[J].JournalofHebeiUniversity:NaturalScienceEdition, 2011,31(5):1-5.
Somenewcompanioninequalities
GAOHongya,NIUWenjuan,WUYingxue
(College of Mathematics and Computer Science, Hebei University, Baoding 071002, China)
Inequalities appear in all branches of mathematics, and applied in the fields of mathematics, physics, mechanics and engineering.In this paper, a sufficient condition ensuring companion inequalities is given and some new companion inequalities related to Seiffert, generalized Heronian, arithmetic and weighted geometric means are obtained.
companion inequality; Seiffert mean;generalized Heronian mean; arithmetic mean; weighted geometric mean
10.3969/j.issn.1000-1565.2013.01.001
2012-04-07
国家自然科学基金资助项目(10971224);河北省自然科学基金资助项目(A2011201011)
高红亚(1969-),男,河北顺平人,河北大学教授,博士,主要从事几何函数论与非线性分析方向研究.
E-mail:hongya-gao@sohu.com
O178
A
1000-1565(2013)01-0001-04
MSC2010: 26D20
(责任编辑王兰英)