APP下载

纳米多孔阳极氧化铝模板的制备方法及应用的研究进展

2013-10-27赵婷婷康卫民韦尚志

天津工业大学学报 2013年4期
关键词:孔道草酸孔洞

赵婷婷,刘 皓,李 津,康卫民,韦尚志

(天津工业大学纺织学部,天津 300387)

多孔阳极氧化铝(PAA)模板由多孔层和阻挡层组成,其中多孔层由均匀排列的纳米孔洞组成,孔密度较高,孔与孔之间相互平行,并与基体表面垂直.阻挡层是一层致密绝缘的氧化层,位于孔基底将多孔层和铝基体分开.由于PAA膜具有这种独特的结构,是非常理想的制备纳米材料的模板.1953年美国铝业公司Keller等[1]首先报道了用电化学方法制备氧化铝孔洞模板.20世纪80年代后期以来,多孔氧化铝膜在纳米材料上的应用引起了新一轮的研究热潮.1993年,美国约翰霍普金斯大学Whitney等[2]利用PAA模板制备了磁性金属纳米线,开拓了纳米材料制备的新方法;1995年日本首都大学Masuda等[3]首次利用二次氧化的方法,成功制备了孔洞排列高度有序的PAA膜和金属纳米阵列,开创了PAA膜在纳米结构材料方面新的应用.研究人员利用PAA模板成功制备了碳纳米管[4-5]、金属和金属复合物纳米线[2-5]、基因传输、生物医学、微燃料电池材料[6]、仿壁虎脚粘附材料[7-8]等各种纳米材料,极大促进了纳米材料的研究和发展.

1 PAA模板的一般制备方法

多孔阳极氧化铝(PAA)模板是采用电化学技术在铝表面进行原位生长制备得到的,这种方法称之为阳极氧化法.阳极氧化法按照氧化生长速率的不同可以分为温和氧化法和强烈氧化法.多孔阳极氧化铝模板的制备按照制备工序的不同又可以分为二次阳极氧化法和模压阳极氧化法.

1.1 温和阳极氧化法

温和氧化法即将预处理后的铝基底在适当的阳极氧化条件下进行一次氧化.其特点是阳极氧化反应缓慢,电流密度一般在10 mA/cm2数量级,氧化膜的生长速率较慢,约为2 μm/h.研究表明,温和法制备的PAA孔径和孔间距均随阳极氧化电压的增加而增大,一般孔间距与电压的比例系数为2.5 nm/V[9].

温和氧化过程中,自排序氧化铝纳米阵列一般在3种体系中获得:①25 V硫酸中得到的孔直径为63 nm;②40 V草酸中得到的孔直径为100 nm;③195 V磷酸中得到的孔直径为500 nm.

1.2 强烈阳极氧化法

2006年德国马克斯·普朗克微结构物理研究所Lee等[10]提出了一种以草酸为电解液,通过提高阳极氧化电压(100~160 V),制备AAO模板的强烈阳极氧化法.其薄膜生长速率为50~70 μm/h,较以草酸为电解液的温和阳极氧化速率提高了25~35倍.生成的PAA 膜孔间距为 200~300 nm,膜非常厚(>100 μm),孔隙度低且高度有序的氧化铝膜具有高纵横比(>1000),纳米孔排列均匀,可调节直径大小.该方法通过对电解液的老化和温度的控制来提高阳极氧化电压,从而提高PAA的有序度.但此工艺必须将电解槽放入液氮中来降低氧化铝表面温度,成本较高.

为解决此问题,2009年太原理工大学孙晓霞等[11]通过在草酸溶液中加入不同有机醇的方法来有效减少在氧化过程中产生的大量热量,采用强烈氧化法快速制备了高度有序的PAA模板.在以乙二醇水溶液(V醇∶V水=1∶1) 为溶剂的 0.5 mol/L 草酸电解液中,于160 V电压下制备出的PAA模板孔分布均匀,孔径约为80 nm,孔间距约为120 nm,并呈六角形规则排列,膜生长速率为51.9 μm/h.

2009年南京科技大学Song等[12]提出,在强烈阳极氧化过程中,避免铝基底击穿现象的关键是要降低阻挡层的厚度;增加电解液的浓度和温度,可以降低阻挡层的厚度.所以,在高浓度的草酸溶液(>0.3 mol/L)中,在较高温度(16~40℃)下进行强烈阳极氧化,不会发生击穿现象.0.6 mol/L草酸溶液制备的PAA膜如图1所示.

图1 草酸电解液制备的PAA膜SEM图像Fig.1 SEM images of PAA sample fabricated in oxalic acid solution

2008年华南理工大学Li等[13]在硫酸-硫酸铝-水溶液中,分别在40和50 V的氧化电压下,通过两步强烈阳极氧化法制备了孔直径为77和96 nm的PAA膜,在恒定的40 V电压下通过改变电流密度得到PAA膜.实验表明,孔间距不仅依赖于阳极氧化电压,而且也受到电流密度的影响.这意味着强烈阳极氧化法能够通过同时调整阳极氧化电压和电流密度对PAA膜的孔结构进行设计和控制.

1.3 两步阳极氧化法

两步阳极氧化法是目前制备高度有序的PAA模板最常用的方法.

1995年Masuda等[3]首次利用二次氧化的方法制备了孔洞排列高度有序的PAA膜.将预处理后的铝基底在0.3 mol/L草酸中长时间恒压(40 V)氧化;一次氧化后,将铝基底放入饱和HgCl2溶液中去除氧化层;然后在相同条件下进行二次氧化,得到高度有序的PAA模板.

2007年哈尔滨工业大学杨培霞等[14]在不进行高温退火处理的情况下,利用二次氧化法在草酸中得到纳米孔排列高度有序的PAA模板.

1.4 模压阳极氧化法

Masuda等[15-17]提出一种预先压印技术用来控制PAA模板的孔结构,即模压法.模压法是将排列有序的碳化硅模具放到铝的表面,在室温下使用油印机压印,然后对铝片进行阳极氧化.图2展示了压印前后PAA模板的对照图.

图2 采用预先压印技术的PAA膜SEM图像Fig.2 SEM micrographs of surface of anodic porous alumina using pretexturing process

2012年吉林大学Wang等[18]使用聚苯乙烯纳米球对铝基底进行预先压印,然后放入0.3 mol/L磷酸溶液中进行阳极氧化,制备出层级结构的纳米孔阵列,如图3所示.

本课题组采用二次阳极氧化法制备了规整的多孔阳极氧化铝模板(如图4),该模板能够用于仿壁虎脚生物材料、面阵柔性传感器、柔性染料敏化太阳能电池的染料吸附、多孔半导体材料的制备.

图3 PAA层级结构的SEM横截面图Fig.3 SEM image of cross-sectional of PAA with hierarchical structure

图4 本课题组制备的PAA膜Fig.4 SEM images of PAA template fabricated in our group

2 特殊形状PAA模板的制备方法

2.1 孔道呈Y型或树杈形分布的模板

2001年,韩国首尔大学Jin[19]等制备了Y型PAA模板,将预处理后的铝基底在0.3 mol/L草酸中恒压(40 V)氧化24 h;去除氧化层后在相同条件下二次氧化,二次氧化时间为20 min,在二次氧化的最后时间,以5 V/步将电压从40 V降到20 V.将模板在磷酸中扩孔,随后进行第三步氧化,得到Y型PAA模板,如图5所示.

图5 Y型PAA的横截面SEM图像Fig.5 SEM image of cross-section of PAA template with Y-shape holes

2005年纽约州特洛伊伦斯勒理工大学Meng等[5]利用降电压法,通过改变阶跃电压的幅值制备出可控数目分枝的PAA模板,即先用二步阳极氧化法制备出PAA的主管,然后把氧化电压降低到原来的1,就能得到数目可控的n条枝管PAA模板.图6所示为树杈型PAA制备的碳纳米管截面图.

图6 树杈型PAA制备的碳纳米管截面图Fig.6 SEM image of cross-section of CNTs by using PAA template with tree-shape holes

2.2 复合孔径结构的PAA模板

Lee等[10]使用温和阳极氧化法(MA)和强烈阳极氧化法(HA)相结合,制备出复合孔径阵列结构的PAA.与温和阳极氧化产生的PAA孔相比,强烈阳极氧化所产生的PAA孔直径较小.通过反复进行这两个过程的阳极氧化反应,可以得到一个高度有序的、管径可调节的复合孔径阵列结构PAA,如图7所示.每个阶段的孔洞长度可以通过调节相应步骤的反应时间来控制.但这种阳极氧化方式需要更换电解液,实验操作上比较繁琐,并且只有两种突变的管径.

图7 MA/HA交替的PAA截面图Fig.7 SEM image of cross-section of PAA by using MA and HA method alternately

Ho等[20]通过两次更换电解液得到具有复合孔径阵列的3层PAA模板,但孔洞的大小和数目不容易控制,其SEM图如图8所示.

图8 三层PAA模板的SEM图像Fig.8 SEM images of PAA with three-tiered

2009年澳大利亚伊恩·华克研究所Losic等[21-22]使用周期性阳极氧化法制备出具有互通式纳米管道的复合纳米结构.即在阳极氧化过程中利用周期性恒压电源控制或恒流电源控制法,不仅可以控制管道的直径,同时可以控制其形貌.这种方法使用缓慢变化的阳极氧化电压或电流,使反应过程在软阳极氧化和硬阳极氧化之间不断变化,最终得到孔道呈周期性分布的PAA模板,如图9所示.

图9 孔道周期性分布PAA的SEM图像Fig.9 SEM image of PAA with cyclic pores

2.3 孔道方向与铝基底平行的PAA模板

常规纳米PAA模板的孔道方向均垂直于铝基体表面,2005年法国巴黎理工大学Cojocaru等[23]通过恒压阳极氧化法,将一层薄铝箔夹在两层绝缘层(SiO2)之间,铝箔被SiO2包覆,只在侧面处与硫酸电解液接触,阳极氧化电场只能沿与铝箔表面平行的方向,最终在低电压(3~5 V)下得到了孔径在3~4 nm、孔道平行于铝箔表面的PAA模板.制备过程如图10所示.

图10 孔道平行于铝表面的PAA示意图Fig.10 Schematic diagram of PAA with holes parallel to surface of aluminum

2.4 孔道开口呈正方形或三角形的PAA模板

众所周知,常规PAA模板纳米孔道的开口呈规则的六边形结构.Masuda等[24-25]提出,纳米孔道的开口形状由压痕点(孔道中心点)即由铝表面的排列图案决定,而压痕点的形状由“Voronoi划分”确定.Masuda等根据“Voronoi划分”改变SiC模具形状,将压痕点排列成正方形和石墨结构图案,制备出孔洞开口呈规则正方形或三角形等特殊形状的PAA膜,如图11所示.

图11 孔洞开口呈特殊形状的PAAFig.11 SEM images of PAA with special holes

2.5 孔道呈倒圆锥形的PAA模板

2007年Masuda研究组[26]先在草酸溶液中阳极氧化,然后在磷酸中扩孔,这两个过程重复交替进行,制备出了高度有序的倒圆锥形孔道PAA模板.2012年中国科学院Li等[27]发现,倒圆锥形孔洞的开口尺寸随总扩孔时间改变,孔洞深度随总阳极氧化时间改变.于是,通过控制扩孔和氧化时间,本文得到了各种形状的倒圆锥形孔洞,如图12所示.

图12 各种倒圆锥形孔洞Fig.12 Diverse profiles of taper-nanopores

3 PAA的应用

PAA膜具有很多优越的性能,如孔结构高度有序、孔径均匀、孔洞形貌可控、比表面积高等.此外,与光刻技术相比,多孔阳极氧化铝模板成本更低、制备工序更加简单,已被广泛地用于制造各种纳米结构材料.

3.1 电磁方面

Whitney等[2]采用以PAA作为模板的复型技术已经制备出了各种各样的纳米线和纳米管材料,例如Ag、Pt、Sn、C、TiO2、CuS、AgI等[28-33].使用 PAA 模板制备的有序金属纳米线,可应用于微燃料电池[6]、磁记录介质[2]、电阻器、晶体管和纳米反应器等的制造,制备的导电聚合物纳米结构和碳纳米管[4-5]可用于电学、光学和光电性能.

3.2 传感器

使用PAA已开发出各种光学生物传感器[34-35]和电化学生物传感器[36-37].

光致发光(PL)生物传感器也已应用到氧化铝衬底上.2004年兰州大学Jia等[34]证明了通过引入蛋白质(如胰岛素或人血清白蛋白),嵌入PAA膜纳米孔内染料(桑色素)的光致发光强度可以大大增强.

为了提高葡萄糖生物传感器的分析性能,2003年华东师范大学Xian等[36]将普鲁士蓝(PB)电化学沉积到PAA模板孔内制成纳米电极阵列.PB沉积之前,通过真空蒸镀将一层薄金沉积到PAA膜的另一面.然后使葡萄糖氧化酶成功交联上PB阵列.得到的PB纳米电极阵列呈现出一个较宽的线性标定范围(5.0 × 10-6~8.0 × 10-3M)和较低的检测范围(1 μM).

3.3 催化剂载体

多孔氧化铝另一个重要的应用是作为催化膜[38]使用.由于材料的高比表面积,大量的酶或合成催化剂在高反应速率下可以在阳极氧化铝膜内固化.2006年美国密歇根州立大学的Dotzauer等[38]通过聚电解质层和PAA膜载体内金纳米粒子之间的吸附作用形成催化膜.该膜将4-硝基苯酚(4-NP)催化还原成4-氨基苯酚(4-AP);在其它可还原的化合物(如氰基、苯乙烯基)存在下,该组制备的催化膜可选择性地催化还原硝基.

3.4 分离工作

此外,改变PAA的表面化学性质和孔径可以进行一系列精细的分离工作,包括对多价离子[39]、氨基酸[40]、蛋白质[41]和核酸[42]的分离.2006年美国阿拉莫斯国家科学实验室的McCleskey等[39]在纳米氧化铝表面沉积Au层,使得选择性分离膜的孔开口减小为7 nm.使用烷基硫醇对金涂层进一步官能化,三烷基膦氧化物的金属离子载体使得表面疏水.当采用硝酸铀酰和硝酸锂作为进料溶液、醋酸钠作为接收液时,通过磷酸盐或膦氧化物载体的促进输送,100%的金属离子都能够穿过膜.当铀离子和铕离子都存在于进料溶液时,铀离子的选择性高于铕离子,因为前者的离子选择性地绑定到了膦氧化物载体上.同时,膜上其他离子(如 H+、Ca2+、CH3COO-)运输受阻.2003 年日本NEC公司的Sano等[42]采用颗粒排除分离的方法,使用PAA膜作为DNA颗粒离析平台.在这种方法中,具有较小尺寸的DNA生物分子经常被困在孔隙中,因此通过通道时,洗脱速度比大的生物分子慢得多.

3.5 生物医学

多孔氧化铝基材料已被作为支架用于组织工程[43],控制细胞进行表面交互作用.最近研究表明,该材料具有相当大的潜力作为药物或基因的转运载体,可控制治疗性分子的释放.2010年澳大利亚伊恩·华克研究所的Kant等[43]以SK-N-SH细胞作为神经元细胞模型,研究了各种PAA膜的孔结构对人神经母细胞瘤生长的影响.这项研究表明,孔结构对神经元细胞的取向和表型有直接影响,开拓了生物工程的可能性.该组在复合孔径和分叉结构表面上发现了最广泛的细胞反应.这种表面提供了最多的细胞附着、频繁的神经元状表型和大量的细胞间交互作用.2011年Aw等[44]探讨了药物纳米载体的洗脱性能,其中PAA作为治疗植入物,聚合物胶束作为模型纳米载体.等离子聚合物层在PAA膜内沉积的厚度不同,孔的直径可控,因此药物释放的速率可控.通过控制等离子体聚合物层沉积,PAA植入物达到良好的零级释放动力学是可能的.

3.6 仿生学领域

近年来,PAA模板在仿生学纳米材料领域也有着广泛的用途.

自从2000年美国斯担福大学Autumn[45]证实壁虎自由行走在光滑表面是借助于范德华力后,许多研究人员尝试用PAA模板制作仿壁虎脚胶带,2003年,Campolo等[46]在孔径为200 nm、高60 μm的PAA模板涂覆聚氨酯溶液,得到了聚氨酯纳米阵列,但未对其粘附性能进行测试.

2007年,新加坡南阳理工大学Kustandi等[47]在草酸电解液中使用不同温度得到两种PAA模板,并采用光刻工艺和紫外光压印技术制得层级结构.然后将聚甲基丙烯酸甲酯(PMMA)溶液沉积到层次结构的PAA模板中,得到仿壁虎脚粘附阵列.但是,由于所制备膜上的支柱过于密集造成凝结,最终这些结构的粘附力没有精确地表现出来.

2011年,新加坡南阳理工大学Ho等[8]将磷酸和草酸溶液中制备出的双层PAA模板放在一个250 μm厚的聚碳酸酯膜上进行热压纳米压印.得到粘附阵列的宏观粘附力为6.5 N/cm2,与壁虎脚毛的10 N/cm2在一个数量级.

2012年,北京航空航天大学Liu等[48]将聚酰亚胺的预聚物旋涂到制备好的PAA模板上,在平板玻璃基底上得到的聚酰亚胺薄膜对水具有很好的粘附性.

本课题组正尝试用PAA模板制备仿壁虎脚粘附材料,并在该材料表面镀上金属镀层,实现自粘附表面生物电干电极,该电极能够应用于健康可穿监控系统当中[49-50].

4 结束语

从各种PAA模板的制备方法可以看出,无论是一般PAA模板制备,还是特殊形状PAA模板制备,影响PAA孔洞形貌尺寸的最主要因素仍然是阳极氧化的电场强度、氧化温度、电解液种类及浓度等.目前,世人仍未能洞悉PAA纳米孔洞的生长机理,没有一种理论能解释所有实验现象.随着研究的深入,PAA模板的调控和制备技术必然会有更新的突破.新型PAA模板的制备在光学、电学、磁学、仿生学、生物医学等纳米材料科学领域具有广阔的应用前景,对各种功能性纳米材料的开发具有巨大的促进作用.

[1]KELLER F,HUNTER M S,ROBINSON D L.Structural features of oxide coatings on aluminum[J].Journal of the Electrochemical Society,1953,100(9):411-419.

[2]WHITNEY T M,SEARSON P C,JIANG J S,et al.Fabrication and magnetic properties of arrays of metallic nanowires[J].Science(New York,NY),1993,261(5126):1316-1319.

[3]MASUDA H,FUKUDA K.Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J].Science(New York,NY),1995,268(5216):1466-1468.

[4]LI J,PAPADOPOULOS C,XU J.Nanoelectronics-growing y-junction carbon nanotubes[J].Nature,1999,402(6759):253-254.

[5]MENG G W,JUNG Y J,CAO A Y,et al.Controlled fabrication of hierarchically branched nanopores,nanotubes,and nanowires[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(20):7074-7078.

[6]BOCCHETTA P,CONCIAURO F,SANTAMARIA M,et al.Cs-0.86(NH4)(1.14)SO4Te(OH)(6)in porous anodic alumina for micro fuel cell applications[J].Electrochimica Acta,2011,56(11):3845-3851.

[7]许云.仿壁虎粘附材料的制备与粘附性能研究[D].合肥:中国科学技术大学,2010.

[8]HO A Y Y,YEO L P,LAM Y C,et al.Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae[J].Acs Nano,2011,5(3):1897-1906.

[9]LI A P,MULLER F,BIRNER A,et al.Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina [J].Journal of Applied Physics,1998,84(11):6023-6026.

[10]LEE W,JI R,GOSELE U,et al.Fast fabrication of longrange ordered porous alumina membranes by hard anodization[J].Nature Materials,2006,5(9):741-747.

[11]孙晓霞,黄平,梁建,等.强烈阳极氧化法快速制备多孔氧化铝模板[J].无机化学学报,2008,24(9):1546-1550.

[12]SONG Y,JIANG L,QI W,et al.High-field anodization of aluminum in concentrated acid solutions and at higher temperatures[J].Journal of Electroanalytical Chemistry,2012,673:24-31.

[13]LI Y,LING Z Y,CHEN S S,et al.Fabrication of novel porous anodic alumina membranes by two-step hard anodization[J].Nanotechnology,2008,19(22):225604.

[14]杨培霞,安茂忠,田兆清.高度有序多孔阳极氧化铝模板的制备[J].材料科学与工艺,2007,15(1):87-90.

[15]MASUDA H,YAMADA H,SATOH M,et al.Highly ordered nanochannel-array architecture in anodic alumina[J].Applied Physics Letters,1997,71(19):2770-2772.

[16]ASOH H,NISHIO K,NAKAO M,et al.Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid[J].Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures,2001,19(2):569-572.

[17]ASOH H,NISHIO K,NAKAO M,et al.Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al[J].Journal of the Electrochemical Society,2001,148(4):B152-B156.

[18]WANG X,XU S,CONG M,et al.Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography[J].Small,2012,8(7):972-976.

[19]JIN Seung L,GEUN Hoi G,HOSEONG K,et al.Growth of carbon nanotubes on anodic aluminum oxide templates:Fabrication of a tube-in-tube and linearly joined tube[J].Chemistry of Materials,2001,13(7):2387-2391.

[20]HO A Y Y,GAO H,LAM Y C,et al.Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina[J].Advanced Functional Materials,2008,18(14):2057-2063.

[21]LOSIC D,LILLO M,LOSIC D Jr.Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization[J].Small,2009,5(12):1392-1397.

[22]LOSIC D,LOSIC D Jr.Preparation of porous anodic alumina with periodically perforated pores[J].Langmuir,2009,25(10):5426-5431.

[23]COJOCARU C S,PADOVANI J M,WADE T,et al.Conformal anodic oxidation of aluminum thin films[J].Nano Letters,2005,5(4):675-680.

[24]MASUDA H,ASOH H,WATANABE M,et al.Square and triangular nanohole array architectures in anodic alumina[J].Advanced Materials,2001,13(3):189-192.

[25]ASOH H,ONO S,HIROSE T,et al.Growth of anodic porous alumina with square cells[J].Electrochimica Acta,2003,48(20/21/22):3171-3174.

[26]YANAGISHITA T,YASUI K,KONDO T,et al.Antireffection polymer surface using anodic porous alumina molds with tapered holes[J].Chemistry Letters,2007,36(4):530-531.

[27]LI J,LI C,CHEN C,et al.Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores[J].Acs Applied Materials&Interfaces,2012,4(10):5678-5683.

[28]NIELSCH K,MULLER F,LI AP,et al.Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition[J].Advanced Materials,2000,12(8):582-586.

[29]PIAO Y,LIM H,CHANG J Y,et al.Nanostructured materials prepared by use of ordered porous alumina membranes[J].Electrochimica Acta,2005,50(15):2997-3013.

[30]SHEN X P,HAN M,HONG J M,et al.Template-based CVD synthesis of ZnS nanotube arrays[J].Chemical Vapor Deposition,2005,11(5):250-253.

[31]WAN Jun Y,YOU Suk C,GYU Seok C,et al.Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template[J].Nanotechnology,2005,16(5):S291-295.

[32]ZHAO L L,YOSEF M,STEINHART M,et al.Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe,Sn,and SnO2[J].Angewandte Chemie-International Edition,2006,45(2):311-315.

[33]MARTIN C R.Nanomaterials:A membrane-based synthetic approach[J].Science(New York,NY),1994,266(5193):1961-1966.

[34]JIA R P,SHEN Y,LUO H Q,et al.Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array[J].Solid State Communications,2004,130(6):367-372.

[35]JIA R P,SHEN Y,LUO H Q,et al.Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered pore arrays[J].Journal of Physics:Condensed Matter,2003,15(49):8271.

[36]XIAN Y,HU Y,LIU F,et al.Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing[J].Biosensors and Bioelectronics,2007,22(12):2827-2833.

[37]DARDER M,ARANDA P,HERNÁNDEZ-VÉLEZ M,et al.Encapsulation of enzymes in alumina membranes of controlled pore size[J].Thin Solid Films,2006,495(1/2):321-326.

[38]DOTZAUER D M,DAI J,SUN L,et al.Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports[J].Nano Letters,2006,6(10):2268-2272.

[39]MCCLESKEY T M,EHLER D S,YOUNG J S,et al.Asymmetric membranes with modified gold films as selective gates for metal ion separations[J].Journal of Membrane Science,2002,210(2):273-278.

[40]HONG S U,BRUENING M L.Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes[J].Journal of Membrane Science,2006,280(1/2):1-5.

[41]SUN L,DAI J,BAKERG L,et al.High-capacity,proteinbinding membranes based on polymer brushes grown in porous substrates[J].ChemistryofMaterials,2006,18(17):4033-4039.

[42]SANO T,IGUCHI N,IIDA K,et al.Size-exclusion chromatography using self-organized nanopores in anodic porous alumina[J].Applied Physics Letters,2003,83(21):4438-4440.

[43]KANT K,LOW S P,MARSHAL A,et al.Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum[J].ACS Applied Materials&Interfaces,2010,2(12):3447-3454.

[44]AW M S,SIMOVIC S,ADDAI-Mensah J,et al.Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs[J].Journal of Materials Chemistry,2011,21(20):7082-7089.

[45]AUTUMN K,LIANG Y A,HSIEH S T,et al.Adhesive force of a single gecko foot-hair[J].Nature,2000,405(6787):681-685.

[46]CAMPOLO D,JONES S,FEARING R S.Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces[C]//2003 Third IEEE Conference on Nanotechnology IEEE-NANO 2003 Proceedings.San Francisco:IEEE-NANO,2003:856-859.

[47]KUSTANDI T S,SAMPER V D,NG W S,et al.Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template[J].Journal of Micromechanics and Microengineering,2007,17(10):N75-N81.

[48]LIU K S,DU J X,WU J T,et al.Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials[J].Nanoscale,2012,4(3):768-772.

[49]LIU H,KANG W,TAO X,et al.Performance evaluation of surface biopotential dry electrodes based on PSD and EIS[J].International Journal of Advancements in Computing Technology,2012,4(20):497-505.

[50]LIU H,TAO X,XU P,et al.A dynamic measurement system for evaluating dry bio-potential surface electrodes[J].Measurement:Journal of the International Measurement Confederation,2013,46(6):1904-1913.

猜你喜欢

孔道草酸孔洞
正六边形和四边形孔道DPF性能的仿真试验研究
一种面向孔洞修复的三角网格复杂孔洞分割方法
从慢性肾脏病综合诊疗的角度看草酸
基于ANSYS的液压集成块内部孔道受力分析
孔洞加工工艺的概述及鉴定要点简析
基于FLUENT的预应力孔道压浆机理与缺陷分析
强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响*
DPF孔道内流场及微粒沉积特性的数值模拟