APP下载

用Yangian代数解除Rb金属原子简并态

2013-10-25张志颖苟立丹白端元周成城肖洪亮

吉林大学学报(理学版) 2013年5期
关键词:生成元本征角动量

张志颖,苟立丹,白端元,周成城,肖洪亮

(1.长春理工大学理学院,长春130022;

2.长春理工大学电子信息工程学院,长春130022)

利用Yang-Baxter方程可研究量子可积问题.当其解为有理解时,它是无周期的,对应于Yangian代数[1-5].Yangian代数是Hopf代数的一种变形,是比Lie代数更大的无穷维代数,是李代数的子代数,其物理基础为量子可积的统计模型[6-12].Yangian代数本质是无穷维代数,由有限个生成元I和J以如下方式生成:

其中:I为总角动量,遵循Lie代数sl(2)对易关系;J(J+,J-,J3)为张量;a和b为任意参数.集合{I,J}形成关于sl(2)的Yangian代数,记为Ysl(2).Ysl(2)遵从如下独立对易关系:

文献[13-21]给出了Yangian代数的物理意义及应用,如运用Yangian代数分析可积模型的对称性及利用Yangian算子作为升降算子实现系统本征态间的跃迁.本文利用Yangian算子,构造出新的算符,该算符可描述不同量子态间的跃迁,将其作用于系统简并的本征态上,可实现能级劈裂,从而达到解除简并态的目的.

1 Rb金属原子在Hamilton系统中的反常简并及本征态

在浓87Rb蒸汽实验中,有少量成分形成Rb2,其外层电子形成自旋衰减形式(spin-dimmer),当外加恒磁场为特定值时,Zeeman效应产生的谱分裂消失.该Hamilton系统可表示为

式(2)当x=±1时出现简并,H存在2K+1个对应同一个本征值的本征函数,即系统为2K+1重简并[22-23].

将Hamilton量写成一般形式:

其中:L1为轨道角动量;L2为自旋角动量.于是,可定义本征态为

其中 m=j1+1,j1-1,…,-j1,其简并度为2j1+1.

当λ'=λ-时,波函数为

其中 m=j1,j1-1,…,-(j1+1),其简并度为2j1+1.

2 解除系统简并态

引入由Yangian生成元组成的算符H1=J+J-和H2=J-J+.其中

时,整个体系的Hamilton量变为H=H0+H1和H=H0+H2.

2×式(8)-式(7)-式(9)可得

将m和j1的数值代入式(10),并由计算机软件计算可得 u1,u2,R的解.当 j1=1,2,3时,u1,u2,R和u1-u2的值列于表1.

2×式(12)-式(11)-式(13)可得

当 j1=1,2,3 时,u1,u2,R 和 u1-u2的值列于表2.

表1 对 H1=J+J-,当 λ'=λ+时,u1,u2,R 和 u1-u2的值Table 1 Values of u1,u2,R,u1-u2with H1=J+J-and λ'=λ+

2×式(17)-式(16)-式(18)可得

当 j1=1,2,3 时,u1,u2,R'和 u1-u2的值列于表3.

表2 对 H1=J+J-,当 λ'=λ-时,u1,u2,R 和 u1-u2的值Table 2 Values of u1,u2,R,u1-u2with H1=J+J-and λ'=λ-

表3 对 H2=J-J+,当 λ'=λ+时,u1,u2,R'和 u1-u2的值Table 3 Values of u1,u2,R',u1-u2with H2=J-J+and λ'=λ+

2×式(21)-式(20)-式(22)可得

当 j1=1,2,3 时,u1,u2,R'和 u1-u2的值列于表4.

表4 对 H2=J-J+,当 λ'=λ-时,u1,u2,R'和 u1-u2的值Table 4 Values of u1,u2,R',u1-u2with H2=J-J+and λ'=λ-

综上所述,本文以Rb金属原子为模型,通过分析可知,H0=-gL1·L2+λL32的本征态为2j1+1重简并.为使简并的能级发生劈裂,引入了Yangian代数,由Yangian生成元构造了新算符H1=J+J-和H2=J-J+,使其作用于上述模型简并的本征态上,为保证H0的本征态仍为H1和H2的本征态,可得u1,u2,R和R'的限制条件,从而达到消除简并的目的.

[1]NIU Kai,XUE Kang,ZHAO Qing,et al.The Role of the l1-Norm in Quantum Information Theory and Two Types of the Yang-Baxter Equation[J].Journal of Physics A:Mathematical and Theoretical,2011,44(26):265304.

[2]HU Tao-tao,WU Chun-feng,XUE Kang.Berry Phase and Entanglement of 3 Qubits in a New Yang-Baxter System[J].Journal of Mathematical Physics,2009,50(8):083509.

[3]WANG Gang-cheng,XUE Kang,WU Chun-feng,et al.Entanglement and the Berry Phase in a New Yang-Baxter System[J].Journal of Physics A:Mathematical and Theoretical,2009,42(12):125207.

[4]HU Tao-tao,WANG Gang-cheng,SUN Chun-fang,et al.Method of Constructing Braid Group Representation and Entanglement in a 9×9 Yang-Baxter System[J].Reviews in Mathematical Physics,2009,21(9):1081-1091.

[5]SUN Chun-fang,HU Tao-tao,WANG Gang-cheng,et al.Thermal Entanglement in the Two-Qubit Systems Constructed from the Yang-Baxter R-Matrix[J].International Journal of Quantum Information,2009,7(5):879-889.

[6]Arnaudon D,Molev A,Ragoucy E.On the R-Matrix Realization of Yangians and Their Representations[J].Annales Henri Poincaré,2006,7(7):1269-1325.

[7]Inozemtsev V I,Inozemtseva N G,Sadovnikov B I.On the Integrals of Motion for an Exactly Solvable Model of Interacting Fermions[J].Moscow University Physics Bulletin,2008,63(2):83-86.

[8]TIAN Li-jun,ZHANG Hong-biao,JIN Shuo,et al.Y(sl(2))Algebra Application in Extended Hydrogen Atom and Monopolemodels[J].Commun Theor Phys,2004,41(5):641-644.

[9]SUN Chun-fang,XUE Kang,WANG Gang-cheng,et al.Entanglement and Yangian in a V3Yang-Baxter System[J].Quantum Inf Process,2012,11(2):385-395.

[10]Stukopin V A.The Quantum Double of the Yangian of the Lie Superalgebra A(m,n)and Computation of the Universal R-Matrix[J].Journal of Mathematical Sciences,2007,142(2):1989-2006.

[11]Stukopin V A.The Yangian Double of the Lie Superalgebra A(m,n)[J].Functional Analysis and Its Applications,2006,40(2):155-158.

[12]CAO Xue-xia,ZHANG Liang-yun.Quantization of Dimodule Algebras and Quantum Yang-Baxter Module Algebras[J].Journal of Mathematical Research and Exposition,2010,30(4):725-733.

[14]Stukopin V.Yangians of Classical Lie Superalgebras:Basic Constructions,Quantum Double and Universal R-Matrix[J].Proceedings of Institute of Mathematics of NAS of Ukraine,2004,50(3):1195-1201.

[15]TIAN Li-jun,QIN Li-guo,JIANG Ying,et al.Application of Y(sl(2))Algebra for Entanglement of Two-Qubit System[J].Commun Theor Phys,2010,53(6):1039-1042.

[16]Gerasimov A,Kharchev S,Lebedev D,et al.On a Class of Representations of the Yangian and Moduli Space of Monopoles[J].Communications in Mathematical Physics,2005,260(3):511-525.

[17]Lucy G,Alexander M.Representations of Twisted q-Yangians[J].Selecta Mathematica,2010,16(3):439-499.

[18]GOU Li-dan,ZHU Rui-han.A 9×9 Matrix Representation of Temperley-Lieb Algebra and Corresponding Entanglement[J].Chin Phys B,2012,21(2):020305.

[19]WANG Gang-cheng,XUE Kang,SUN Chun-fang,et al.Quantum Phase Transition Like Phenomenon in a Two-Qubit Yang-Baxter System[J].International Journal of Theoretical Physics,2010,49(10):2499-2505.

[20]GOU Li-dan,XUE Kang,WANG Gang-cheng.A 9×9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System[J].Communications in Theoretical Physics,2011,55(2):263-267.

[21]SUN Chun-fang,WANG Gang-cheng,HU Tao-tao,et al.The Representation of Temperley-Lieb Algebra and Entanglement in a Yang-Baxter System[J].International of Quantum Information,2009,7(6):1285-1293.

[22]BAI Cheng-ming,GE Mo-lin,XUE Kang.The Happer’s Puzzle Degeneracies and Yangian [J].Science in China:Series A,2002,32(4):320-329.(白承铭,葛墨林,薛康.Happer简并之谜与Yangian代数[J].中国科学:A辑,2002,32(4):320-329.)

[23]BAI Cheng-ming,GE Mo-lin.Puzzle Degeneracies for87Rb2and Yangian Structures Appearing in Lower Excited States of Rare Gas Atoms[J].Nuclear Physics Review,2001,18(4):232-237.(白承铭,葛墨林.87Rb2的奇怪简并与低激发惰性气体表现的Yangian结构[J].原子核物理评论,2001,18(4):232-237.)

猜你喜欢

生成元本征角动量
两个奇质数乘积长度的二元二次剩余码的幂等生成元
Generative Adversarial Network Based Heuristics for Sampling-Based Path Planning
对经典力学中的轨道角动量和自转角动量的探讨
基于本征正交分解的水平轴风力机非定常尾迹特性分析
一类4×4无界算子矩阵的本征向量组的块状基性质及其在弹性力学中的应用
基于APDL 语言的本征应变法重构激光冲击强化后的残余应力场
指数有界双连续n阶α次积分C群的次生成元及其性质
基于角动量模型的流场涡旋提取方法
部分一一保序扩张有限变换半群的生成元集
用角动量的方法解决并推广一个功能关系问题