APP下载

一类具p-Lap lace算子的边值问题研究

2013-06-01王英博

关键词:边值数理上海师范大学

王英博,丁 玮

(上海师范大学数理学院,上海 200234)

一类具p-Lap lace算子的边值问题研究

王英博,丁 玮

(上海师范大学数理学院,上海 200234)

研究了一类具p-Laplace算子的二阶三点边值问题,并且给出这个边值问题的格林函数.再利用上下解和单调迭代法,得出了这个方程极值解存在的充分条件.

p-Laplace算子;上下解;单调算子;线性边值问题

0 引 言

边值问题理论在微分方程中是非常重要的一个领域.在近些年,边值问题由于其广泛的理论与实际背景而备受关注,见文献[1-7].比如在物理学弦振动问题中,常常会遇到方程求解,这时就需要考虑实际背景,也就是要添加其边值条件.研究边值问题的方法有很多,文献[ 1,2]利用Mawhin的延续定理,上下解问题[ 1,8],单调迭代方法[3],等等.在这些方法中,利用上下解和单调迭代方法是证明边值问题极限解存在性的一种非常有用的方法,见[ 6, 7, 9,10].

然而,由于有些问题的性质不同,使得对它们的研究更加困难.目前有很多文章[ 11,12]是研究线性边值条件的,但研究非线性边值条件的就比较少了[13],而研究p-laplace算子的就更少了[ 14,15].原因在于p-laplace算子会使问题变得更加复杂.

在这篇文章中,考虑了如下带有p-laplace算子的边值问题:

1 基本引理

引理1.1如果δ> 1,f∈C(I×R,R+),下列边值问题:

有唯一解,并且唯一解x(t)≤ 0,t∈( 0,1).

证明 对(2)的第一个方程从η到t积分,得:

由δ> 1,f∈C(I×R,R+)得x(t)≤ 0,利用引理1.1及其方法,可得下面的结论.

推论1.1如果δ> 1,f∈C(I,R+),则边值问题:

有解x(t)≤ 0,t∈( 0,1).

引理1.2 如果δ> 1,则问题(1)有唯一解:

证明对(1)第一个方程从0到t积分,得

对上式从η到t积分,有:

代入边界条件x′(0)= 0,x(1)=δx(η),得:

定义1.1α0被称作边值问题(1)的上解,当α0满足下列条件:

改变不等号的方向,可以定义边值问题(1)的下解β0.

在本文中,定义空间C与算子A如下:

同时,下面两个假设成立.

引理1.3假设(H1),(H2)成立,且δ> 1,则AC⊆C.

证明对∀ξ∈C.令γ=Aξ,由A的定义与引理1. 3,得:

分两步证明结论成立.

第一步,有:

根据推论1. 2,可得u≤ 0,则γ′≤α0′.

第二步,令v(t)=γ(t)-α0(t),由第一步知v′(t)=γ′(t)-α0′(t)≤ 0,由边界条件v(1)=δv(η),再根据引理1. 1,可得v≤ 0,则γ≤α0.

同理可证,γ≥β0,γ′≥β0′.

2 主要结果

对α0,β0∈C,定义β0≤α0,β0(t)≤α0(t),t∈( 0,1).

定理2.1当(H1),(H2)成立,且δ> 1,设α0和β0是边值问题(1)的下解和上解,并且有β0(t)≤α0(t),t∈( 0,1),则存在单调序列{αn(t)}(↘),{βn(t)}(↗)分别一致收敛与边值问题(1)的极限解y*(t)与y*(t).y*(t),y*(t)∈[β0,α0].

证明将分4步证明.

第一步,证β0≤Aβ0,Aα0≤α0.由C的定义与引理1. 4,可以直接得出上述结论.

第二步,当β0≤ξ1≤ξ2≤α0时,证Aξ2≤Aξ1.

所以y*与y*是(1)的极限解.

[1] GEW.Boundary value problems for nonlinear ordinary differential equations[M].Beijing:Science Press,2007.

[2] GEW,REN J.A extnsion of Mawhin′s continuation theorem and its application to boundary value problem with a p-laplacian[J].Nonlinear Anal, 2004,58:447-448.

[3] DINGW,HAN M.Periodic boundary value problems for second order impulsive functional differential equations[J].Appli Math and Compu, 2004,155:709-726.

[4] LAKSHMIKANTHAM V,BAINOV D D,SIMEONOV P S.Theory of impulsive differential equations[M].Singapore:World Scientific,1989.

[5] BAIZ,HUANG B,GEW.The iterative solutions for some fourth-order p-laplace equation boundary value problems[J]. Applied Math Lett, 2006,16:8-14.

[6] NIETO J J,RODRIGUEZ-LOPEZ R.Remarks on periodic boundary value problems for fuctional differential equations[J]JCompu and Math with Appli, 2003,158:339-353.

[7] NIETO J J,RODRIGUEZ-LOPEZR.Existence and approximation of solutions for nonlinear fuctional differential equations with periodic boundary value conditions[J].JCompu and Math with Appli, 2000,40:433-442.

[8] MA R.Multiple results for a three-point boundary value problem at resonance[J].Nonlinear Anal, 2003,53:777-789.

[9] DINGW,HANM.Periodic bundary value problems for second order functional differentialequations[J].JMath Anal Appli, 2004,298:341-351.

[10] LADDE G S,LAKSHMIKANTHAM V,VATSALA A S.Monotone Iterative Techniques for Nonlinear Differential Equations[M].London:Pitman,1995.

[11] LIF,SUN J.Monotone iterativemethod for the second-order three-point boundary value problem with upper and lower so-lutions in the reversed order[J].Appli Math Compu, 2011,217:4840-4847.

[12] WANGW,YANG X.Boundary value problems involving upper and lower solutions in reverse order[J].JCompu and Math with Appli, 2009,230:1-7.

[13] CABADA A,TOMECEK J.Nonlinear second-order equations with functional implicit impulses and nonlinear functional boundary conditions[J].JMath Anal Appli,in Press.

[14] ZHANG X,LIU L.Positive solutions of fourth-order four-pointboundary value problemswith p-Laplacian[J].JMath Anal Appli, 2007,336:1414-1423.

[15] SU H,WEIZ,,WANG B.The existence of positive solutions for a nonlinear four-point singular boundary value problem with a p-Laplacian operator[J].Nonlinear Anal, 2007,66:2204-2217.

Nonlinear boundary value problem s w ith p-Laplace operator

WANG Yingbo,DINGWei
(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

We study the second-order three-point boundary value problem with a p-Laplacian operator,and give the expressions of the Green's function for the boundary problems.By themonotone iterativemethod,sufficient conditions for extreme solutions are obtained.An example is given to illuminate the effectiveness of themain result.

p-Laplace operator;upper and lower solution;monotone operator;nonlinear boundary value problems

O 175.2

A

1000-5137(2013)02-0125-05

(责任编辑:冯珍珍)

2012-12-10

国家自然科学基金面上项目(11271261)

王英博(1986-),男,上海师范大学数理学院研究生;丁 玮(1968-),女,上海师范大学数理学院教授.

猜你喜欢

边值数理上海师范大学
践行“德融数理” 打造“行知乐园”
苗语典型存在动词初探
振荡Robin混合边值齐次化问题
发展教育,让每一位师生都得到充分和谐的发展——上海师范大学附属中学
Neumann边值齐次化问题:W1,p强收敛估计
数理:多少人吃饭
上海师范大学学生篆刻作品入选全国大展
最天然呆笔记 谁说数理就一定枯燥艰深?
再生核结合配置法求解一类带有积分边值条件的四阶非线性微分方程
Échange humain sous le contexte de la mondialisation