APP下载

动里含对称变中有定性

2013-05-17胡仁本

新课程学习·中 2013年1期
关键词:符合条件对称点对称性

胡仁本

圆锥曲线大多有着良好的对称性,涉及到它们的诸多问题中,含有对称性的某些元素发生变化时往往伴随着有些固定的东西呈现,例如符合条件的曲线过定点,符合条件的点在某条直线或曲线上,或符合条件的式子为定值等等,这就是对称的美回馈一份定性的美。本文试图以椭圆和圆为例,对一些含对称的元素在运动中所涉及的定值、定形等加以粗浅的探讨,同时对问题的解决所涉及的数学思想方法加以肤浅的总结。

一、对称点为两个

例1则是它的特殊情形。但例1的两个对称点是焦点,它的解法还可以借助椭圆的第二定义解决问题。

2.关于选参

例1、例2、等题选的是点的坐标作为参数,简称为点参;例3选的是直线的斜率或其倒数作为参数,简称线参;有时也选择线段的比值作为参数简称比参;有时可以设有关曲线的参数方程又涉及位移作为参数,或以角作为参数等等。到底选什么做参数,这就要视具体问题而定。

3.重思想,应万变

任凭题目千变万化,但重要的数学思想是不变的。比如涉及的设而不求思想、参数思想、主元思想、对称思想、减参消元思想、必要条件先行充分条件锁定思想等等。如果我们的学生形成了主要的数学思想,学会了主要的数学方法,就等于找到了解决问题的万能钥匙,跳出题海,以不变应万变。

以上浅见,如有不对之处,敬请同仁斧正。

(作者单位 江苏省苏州吴中区甪直中学)

猜你喜欢

符合条件对称点对称性
证监会:允许符合条件的房企“借壳”已上市房企
一类截断Hankel算子的复对称性
横向不调伴TMD患者髁突位置及对称性
九点圆圆心关于三边的对称点的性质
一道全国高中数学联赛二试题的另一种解法
巧用对称性解题
利用对称求函数的解析式