桥梁抗震设计实用建模方法比较分析
2013-04-29吴文朋李立峰邵旭东孙君翠
吴文朋 李立峰 邵旭东 孙君翠
摘要:地震作用下桥梁结构响应结果的准确性很大程度上依赖于其建立的有限元模型.以一座三跨规则连续梁为例,系统地总结和研究了进行桥梁抗震设计时不同构件和边界条件的模拟方法,并采用3种方法分别建立了集中参数模型、简化模型和精细化模型,在输入相同的地震波后进行非线性时程分析, 并对其响应结果进行比较.分析结果表明:采用前两种简化模型计算的结果误差很大,且较难反映支座、横向挡块和伸缩缝等构件的非线性响应;采用精细化模型计算的结果能更准确地反映桥梁结构的多种非线性响应,更好地适用于基于性能的桥梁抗震设计.
关键词:桥梁;基于性能;建模;地震;有限元模型
中图分类号:U442.55 文献标识码:A
桥梁抗震设计中所采用的建模方法常常过于简化,诸多对结构动力特性影响很大的因素(边界非线性、材料弹塑性等)都难以得到真实的体现,也就无法计算出足够精确的桥梁地震响应结果
徐变等因素引起的纵向自由伸缩位移.地震作用下相邻梁端在纵向可能会发生碰撞接触而产生相互作用力,因此,在实际抗震分析中,伸缩缝常用Gap单元模拟,其力位移关系如图6(a)所示.
横向挡块则是防止上部结构横向位移过大而设置的阻挡构件.横向挡块由弹塑性材料制作,在桥梁抗震建模时可用图7(b)所示的理想弹塑性滞回模型模拟.
3.4支座模拟
支座作为连接上部结构和桥墩(桥台)的重要构件,是有效传递地震力的重要部位.桥梁精确建模时要准确模拟支座的几何特性及力学性能,包括支座高度、三个平动方向线性或非线性刚度以及三个转动方向的线性或非线性的转动刚度等.在实际桥梁抗震设计中,常会用到以下三种类型的支座:①板式橡胶支座;②聚四氟乙烯滑板支座(活动盆式支座);③铅芯橡胶支座. 三种支座的力与位移的滞回关系如图7所示.
5结构响应分析
根据算例桥址处地质条件,从 PEER强震数据库中选取合适的地震波记录,该地震波在两个正交方向的PGA分别为0.32 g和0.33 g.
5.1模态响应
桥梁的特征值分析采用Ritz向量法,即通过假定多自由度的振型形状来计算特征值.该方法可以避免计算不必要的振型且能够包含更多的高阶振型,因此,相比传统的特征向量法计算效率要高得多.为获得足够的计算精度,在本文中可使结构在横、纵两个方向的振型质量参与系数都达95%以上.3种模型的主要模态及其在两个方向的质量参与系数汇总如下表2所示.
由表2可知,3种模型的基本振动模态均为纵飘,对应的基本周期分别为1.871 s,1.91 s和1.967 s.且随着模型复杂程度的提高,结构基本模态的质量参与系数逐渐降低.3种模型的纵向(横向)的动力响应主要取决于第1(2)阶模态,集中质量模型仅需5阶模态便能使两个方向的质量参与系数达95%以上,而简化模型和精细化模型分别需18和50阶模态才能满足质量参与要求.这表明桥梁结构实际上是一个非常复杂的系统,存在着多种振动模态,过于简化的模型可能会忽略掉一些重要的模态而导致分析结果不够精确.
值得指出的是,精细化模型由于建立了桩基模型且由场地类型决定土弹簧刚度很大,导致了直到49和50阶才出现桩基参与的模态形式.
由图8可知,不同的建模方法在完全相同的地震动输入下的位移响应结果差异很大.并且随着结构建模复杂程度提高,墩顶最大位移逐渐减小.特别是简化后的集中参数模型,在纵桥向和横桥向的位移都偏大,这是由于当模型过于简化时,实际参与地震耗能的构件也相应减少了,进而导致由墩柱承担的地震力过大.由图9还可以发现,对于精细化模型而言,横向位移比纵向位移要小很多,这是由于该桥墩顶设置了横向弹塑性挡块,挡块破坏时的滞回耗能对墩柱横向响应起了保护作用.
5.3边界非线性响应
基于性能的桥梁抗震设计要求对不同构件的抗震能力进行验算,美国AASHTO