预应力钢骨混凝土框架梁抗弯承载力计算
2013-04-29任鹏
任鹏
摘 要:本文基于平截面假定,考虑预应力超静定结构次内力,根据截面中钢骨所处的位置不同,建立了预应力钢骨混凝土梁的抗弯承载力计算公式,并对预应力钢骨混凝土梁正截面承载力进行实验验证,计算值与试验的结果吻合较好。
关键词:预应力钢骨混凝土框架;次轴力;次弯矩;抗弯承载力
中图分类号:TU312 文献标识码:A 文章编号:1671-3362(2013)09-0002-02
1 預应力钢骨混凝土梁正截面承载力的计算方法
1.1 基本假定
符合平截面假定:不考虑受拉区混凝土的受拉作用;破坏时梁受压区边缘混凝土的极限压应变为εcu=0.0033,达到极限状态时混凝土受压区的应力图形可取矩形分布;钢骨、钢筋和预应力筋的应力等于其弹性模量与应变的乘积,但其绝对值不大于相应的强度设计值;由于混凝土对钢骨的嵌固和约束作用,承载力极限阶段不考虑钢骨的屈曲。
1.2 界限压区高度
预应力钢骨混凝土梁的破坏形态与钢筋混凝土梁类似,其极限承载能力的丧失同样以受压区混凝土压碎为标志。普通钢筋、预应力钢筋和钢骨下翼缘中屈服时,受压区高度的最小值可以认为是预应力钢骨混凝土梁的截面界限压区高度,如图1所示,设普通钢筋、预应力钢筋和钢骨下翼缘中屈服时,受压区高度分别为xs、xp、xa。
1.3 中和轴在钢骨腹板中()正截面承载力计算
根据中和轴位置的不同分为3种情况:中和轴在钢骨腹板中;中和轴不通过钢骨截面,在钢骨上翼缘与混凝土梁受压边缘之间;中和轴恰好在钢骨上翼缘上。中和轴恰好在钢骨上翼缘上可作为判别其他两种情况的界限。
由表1可以看出,混凝土内钢骨产生滑移使平截面假定已经不再成立,本公式推导时假定钢骨与混凝土之间无滑移,来达到计算简单的目的,所以实际承载力低于钢滑移的公式计算值,因此应用此公式进行计算时,建议预应力钢骨混凝土构件正截面承载力乘以0.8的折减系数。
3 结语
对于一般的框架结构,柱子截面并不十分巨大,柱子的侧向刚度对预应力梁中的预应力效应的影响较小,一般都在5%以下;推导计算公式时,忽略了各部分之间的粘结滑移,从而大大简化了计算方法。因此应用此公式进行计算时,建议预应力钢骨混凝土构件正截面承载力乘以0.8的折减系数;预应力钢骨混凝土梁抗弯承载力计算公式可适用于钢骨混凝土梁承载力的计算。