提倡质疑问难 启迪思维创新
2013-04-29杨汛魏代俊李娅
杨汛 魏代俊 李娅
【摘要】质疑是驱动创新思维的动力,鼓励学生质疑问难是让学生主动学习的重要途径。本文以《概率论与数理统计》课堂教学中的一道数学例题为实例,由学生展开探究性学习,从质疑问难到深入探索,最后解决问题,培养学生创新精神。
【关键词】例题 质疑 创新
【基金项目】湖北民族学院教学研究项目(2010JY032);西南大学第四届教育教学改革研究项目(2010JY024)
【中图分类号】O21 【文献标识码】A 【文章编号】2095-3089(2013)06-0167-01
1.引言
问题是创造之源,“学起于思,思源于疑”,质疑问难是创新的源泉[1]。创新才是学生真正需要掌握的一门“技能”,古人云:“授人以鱼、只供一食只需;授人以渔,则终生受用。”[2]现代教学理念倡导:师生是学习的伙伴,倡导课堂中师生互动,教学相长[2]。当今教师定位不只是单纯的传道、授业、解惑,更应该做学生的引导者、合作者、促进者和鼓励者。因此教师应该充分利用课堂,打破传统教学思维,提倡师生平等地参与课堂双边活动,平等地参与评教与评学。提倡和鼓励学生质疑问难,在课堂上不要担心教学计划被打乱或者怕学生提出的问题自己一时不能够解决,要给学生留质疑问难的时间和空间。
同时,质疑只是手段,释疑才是目的。只有鼓励学生独立的去研究问题,最终解决问题,才能真正培养学生的创新能力。这样学生的学习积极性会不断的提高,同时敢于提出问题、分析问题、解决问题[3-4]。
本文以对一道教材例题的探究性学习为例,展示了学生从提出问题、老师引导思考、学生深入研究、最终解决问题的过程,体现了提倡学生质疑问难、注重创新思维培养的原则,对教育教法的改革有一定借鉴意义。
2.对一道数学例题的探究性学习
2.1问题的提出
本文作者在教授《概率论与数理统计》课程中,在讲解事件独立性关系时,讲授了教材中的一道例题:设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人负责,考虑两种配备维修工人的方法,其一是由4人维护,每人负责20台;其二是由3人共同维护80台,试比较这两种方法在设备发生故障时不能及时维修的概率的大小。(盛骤,《概率论与数理统计》,高等教育出版社(第四版)第36页)。对于这个问题,教材中给出了这样的解答:
解:按第一种方法,以X记“第1人维护的20台中同一时刻发生故障的台数”,以Ai(i=1,2,3,4) 表示事件“第 i 人维护的20台中发生故障不能及时维修”,则知80台中发生故障而不能及时维修的概率可以表示为:
P(A1∪A2∪A3∪A4)≥P(A1)=P(X≥2)
而X~ b(20,0.01),故有
P(X≥2)=1- P{x=k}1- ( )(0.01)k(0.99)20-k=0.0169
即有
P(A1∪A2∪A3∪A4)≥0.0169 (1)
按第二种方法,以B表示第二方案中发生故障而不能及时维修这一事件。Y记80台中同一时刻发生故障的台数,此时,Y~b(80,0.01),故有
P(B)=P(Y≥4)=1- ( )(0.01)k(0.99)90-k=0.0087 (2)
通过比较发现,(1)式大于(2)式,即第一种维修方案在设备故障而不能及时维修的概率大于第二种方案,从平均维护成本看,后一种情况尽管任务重了(每人平均维护约27台),但工作效率不仅没有降低,反而提高了。
在每次课后的小结部分,教师都设置了学生自己总结讨论的环节,这个环节的设置本身就是为学生思考问题、总结问题提供的一个平台。在这次课程的小结部分,学生就针对这个例题提出了这样的问题:“本题会不会存在数值上的一个巧合,使得第二种方法恰好小于P(A1), 若数值P变化会不会存在一种情况:
P(A1∪A2∪A3∪A4)≥P(B)≥P(A1)
也就是说例题的解法存在一定的特殊性。”
对于学生提出的这个问题,教师并没直接给出解答,只是对问题的本质作了引导思考,例题在给定的数值情况下并不是错误解法,但是若从一般性来讲是否存在纰漏。教师最后鼓励学生从逻辑上去进行分析,并提出在解决自然科学问题中,若例题解法存在特殊性,就一定能有这样的反例找出。
2.2问题的探究
学生在得到教师的认可和鼓励后,通过更加深入的思考,得到如下结论:本例题解法确实存在数值上的巧合。
首先从逻辑上分析:对于命题A≥B且B≥C,我们很容易得到结论:A≥C。但是若是命题A≥B且C≥B,那么对于A和C的大小就不能确定。本例就是在没有计算第一种方案的概率P(A1∪A2∪A3∪A4)的情况下,而直接用P(A1)代替了第一种的所有概率,存在逻辑判定错误的问题。并且存在相应的反例。比如在原题的基础上不便把发生故障的概率改成P=0.017,那么我们的题目中提供的解法就是错误的。
解:当发生故障的概率为0.017的时
在计算第一种概率时,P(A1)概率为:P(X≥2)=1- ( )(0.017)k(0.983)20-k=0.0448
第二种的概率: P(B)=P(Y≥4)=1- ( )(0.01)k(0.99)90-k=0.0478
由此P(A1)
如当P=0.01时,
P(A1∪A2∪A3∪A4)=1-(1-P(A1))4=0.0659
由此得第一种的概率大于第二种的概率。
2.3问题的总结
教师对这个问题和学生做出总结,并让学生交流自己的体会。首先教材中的这个例题本身并没有错误,只是解法上没有考虑一般性。学生在交流时认为,首先自己对教科书提出一点质疑得到教师的鼓励感到很有成就感,然后通过自己的摸索,对事件独立性等相关知识有个全面的了解,今后会更加的积极主动的思考学习。
3.结论
提倡质疑问难,鼓励创新思维不能只停留在口头上,而要落实到我们的教学教研工作中去,贯彻到每一个课堂教学中。对于课堂教学而言,质疑的问题的大小不是重要的,重要的是学生要敢于质疑、乐于思考。通过深入的探究不仅更加全面的掌握了所学的知识,更为重要的是在学习探究过程中增强了学习的主动性、体会到了研究的乐趣,培养了学生的质疑能力和创新精神。
参考文献:
[1]于化东,创新教育研究[M], 吉林人民出版社,2007
[2]王复亮, 创新的重要性[J], 创新教育学概论, 2006:(1-10)
[3]郑光礼,对一道课本典型例题的质疑[J],课程教育研究,2012:150
[4]北京市基础教育课程教材改革实验工作领导小组. 质疑问难与创新的关系[J]. 北京市基础教育课程教材改革实验文丛. 2003:(18)
通讯作者:
魏代俊(1977-),男,侗族,副教授,长期从事概率论与数理统计教学研究。