肿瘤相关巨噬细胞促进肿瘤转移的机制
2013-04-18杜胜霖王艳林
杜胜霖 王艳林
肿瘤相关巨噬细胞促进肿瘤转移的机制
杜胜霖 王艳林★
浸入肿瘤微环境中的肿瘤相关巨噬细胞在不同因子的刺激下,可分化为具有抗肿瘤功能的M1型巨噬细胞和具有促肿瘤功能的M2型巨噬细胞。在大多数肿瘤中肿瘤相关巨噬细胞以M2型为主,它参与肿瘤新血管形成、基底膜破坏、细胞外基质重塑、肿瘤细胞上皮间质转化等与肿瘤细胞侵袭转移相关的过程,由此肿瘤相关巨噬细胞已经成为肿瘤靶向治疗的重要靶点。本文主要探讨肿瘤相关巨噬细胞与肿瘤细胞的相互作用,以及其在促进肿瘤转移的各个环节中的分子机制。
肿瘤;转移;肿瘤相关巨噬细胞
肿瘤细胞的侵袭与转移是肿瘤患者高死亡率的重要原因,阐明其相关的分子机制并探索有效的防治手段,是当前肿瘤基础和临床研究的重大课题。大量研究证实,处于肿瘤微环境中的炎性细胞在肿瘤的发生、生长、转移等方面均发挥促进作用,而在这些炎性细胞中又以肿瘤相关巨噬细胞(Tumor-associated macrophage,TAM)起着最为主要的作用。目前认为,肿瘤微环境中的巨噬细胞至少分以下两种[1~2]:(1)经典的M1型巨噬细胞,它具有有效的清除感染微生物和杀伤肿瘤细胞的能力,表型为IL12high,IL23high,IL10low;(2)具有肿瘤促进作用的变异型M2巨噬细胞,它参与肿瘤间质的形成、促进肿瘤生长、转移和肿瘤血管形成,同时导致肿瘤免疫抑制,表型为IL12low,IL23low,IL10high。二者虽均来源于循环血液中的单核细胞,但功能截然相反。浸润到肿瘤微环境中的巨噬细胞在多种细胞因子的作用下绝大多数都表现为M2型。本文就M2型TAM在肿瘤转移中的作用及其机制的研究进展作一简要综述。
1 TAM与肿瘤新血管的形成
肿瘤的远距离转移有血循环转移和淋巴转移两种主要途径,丰富的肿瘤血管将为肿瘤细胞经血循环转移奠定基础。当肿瘤瘤体的快速生长超过原有肿瘤血管的供血能力时,瘤体组织内就会出现缺氧及营养物质匮乏状况。此时肿瘤组织将大量合成新的肿瘤血管以满足瘤组织对氧和营养的需求。肿瘤血管与正常血管比较有以下特点:缺乏经典的微动脉-毛细血管-微静脉结构,高通透性,血管外形异常(呈扭曲形,膨胀形,囊形),周细胞(内皮细胞的支持细胞)与内皮细胞松散结合或周细胞缺失,基底膜异常增厚或完全消失。这种异常的血管结构容易造成肿瘤微环境缺氧,低pH值以及高组织间隙液压[3~5],同时具有免疫杀伤活性的细胞毒性淋巴细胞难以进入肿瘤微环境[4]。
在缺氧条件下,TAMs以及肿瘤相关粒细胞(TANs)通过产生多种细胞因子、生长因子及蛋白酶,特别是血管内皮生长因子-A(VEGF-A),激动素-2(PROK-2)和金属基质蛋白酶(MMPs),而对肿瘤血管生成发挥重要的促进作用[6~7]。
缺氧可通过激活低氧诱导因子(hypoxia inducible factor-1α,HIF-1α)途径促使肿瘤细胞释放VEGF和血小板衍生生长因子(PDGF),这些细胞因子可使原有肿瘤血管的内皮细胞增殖、出芽并产生新的肿瘤血管。在血管生成素-1(Ang-1)和VEGF的介导下,TAM前体细胞和骨髓源性抑制细胞(MDSCs)被大量募集到缺氧的肿瘤微环境中,并在多种细胞因子的作用下,通过激活NF-κB,STAT-3和AP-1信号通路,合成和释放能促血管形成的因子,如:CXCL-1,CXCL-8,VEGF等[8~9]。另外有实验证实,表面有Tie-2(Ang-1的受体蛋白)表达的巨噬细胞可产生多种促血管生成因子,包括VEGF-A、MMP-9、Cox-2、胸苷磷酸化酶和组织蛋白酶B(CTSB)等[10~12],它们不仅可促使血管生成,更能保持新生血管的结构和生存力[13],其促血管生成能力可在肿瘤细胞源型的Ang-1的作用下更进一步增强[11~12]。
2 TAM与肿瘤细胞的上皮间质转化
在过去十年里,越来越多的证据表明肿瘤细胞可通过上皮间质转化(EMT)获得侵袭及迁移的能力[14~16]。这些转化后的细胞失去上皮细胞固有的特征,如细胞之间的紧密连接,细胞的极性,而且细胞骨架发生重塑进而获得间质细胞的迁移性和可塑性等特征[16]。这些表型的改变与EMT相关转录因子(如Snail,Zeb和twist家族等)的活化密切相关,它们直接影响与上皮细胞表型相关基因的表达,特别是通过抑制Cdh1基因,下调钙粘蛋白E(E-cadherin)的表达,从而使上皮细胞间的紧密连接消失,由此促进细胞的迁移能力[17~18]。
已有大量研究表明肿瘤组织中浸润的免疫细胞,包括巨噬细胞、中性粒细胞、淋巴细胞以及MDSCs,可分泌大量细胞因子和趋化因子促进肿瘤细胞发生上皮间质转化[15,19~21]。这些因子通过激活肿瘤细胞多种信号通路,包括TGF-β、TNF-α、NF-κB、Notch、Wnt以及Hedgehog等,而启动上皮间质转化的过程[22~24]。特别是TAMs分泌的TNF-α能通过上调NF-κB而诱导Snail的转录抑制活性。Snail是一种含锌指结构的抑制性转录因子,能通过下调E-cadhrein的表达而促进EMT过程。Snail蛋白高度不稳定,很容易经GSK-3β磷酸化途径或SCFβ-Trep泛素化途径降解。而TNF-α可通过活化CNS2(COP9 signalosome2)而抑制Snail与GSK-3β和SCFβ-Trep的结合进而增强Snail的稳定性[25]。另外TAMs分泌的IL-6和IL-23可通过活化STAT-3信号通路上调Twist家族基因的表达,从而下调E-cadhrein并降低细胞间的粘附作用[26~27]。
TNF-α/NF-κB/Snail信号通路对EMT的发生起关键性作用[28],NF-κB可视为EMT最有效的诱导因子,TNF-α能激活NF-κB和Akt继而抑制GSK-3β活性,由此增加细胞内Snail的水平,进入细胞核后,Snail将抑制E-cadherin基因的转录并下调其细胞内水平。此外,Snail还能抑制某些肿瘤转移抑制基因的表达,如黑色素瘤中的Raf激酶抑制蛋白和前列腺癌中的PTEN等[29]。Li等[30]的研究发现,miR488能通过下调细胞内NF-κB的水平而抑制EMT,其机制可能与miR488靶向抑制转录因子SATB1有关。SATB1能激活Amphiregulin(一种自分泌的上皮生长因子)基因的转录,后者与细胞膜表面的上皮生长因子受体结合后,能经PI3K/Akt信号通路上调NF-κB的表达水平由此促进EMT。而SATB1 mRNA是miR488的直接靶点,在其3'-UTR内含有miR488的识别和结合序列,miR488与之结合将加快SATB1 mRNA降解和抑制SATB1蛋白合成。下调miR488水平将增高SATB1活性,上调NF-κB表达水平和促进EMT发生。此外还发现,NF-κB能结合到miR488基因的启动子序列上并抑制miR488表达,由此构成一个EMT的正反馈环[30]。另外NF-κB还控制着多种编码细胞因子(IL-1,IL-2,ILp6,TNF-α),趋化因子(IL-8,MIP-1α,MCP-1,RANTES,eotaxin),粘附分子(血管细胞粘附分子,E-cadhrein),生长因子和酶类(环氧化酶2,诱导型氮氧化物合酶)基因的表达[31],它们均能直接或间接促进肿瘤EMT和转移。
TAMs分泌的TGF-β是能诱导EMT的另一种炎性因子。TGF-β原本的生理功能是控制细胞的增殖和促炎症反应,然而肿瘤细胞通常由于基因突变使其丧失了促凋亡和抑制增殖的能力,而在特定的肿瘤微环境中TGF-β发挥着重要的促进EMT的功能。突变的P57/Smad复合物能抑制TGF-β的抗肿瘤作用并活化其促肿瘤转移的能力。TGF-β可通过Smad依赖性和Smad非依赖性两种不同的信号途径促进EMT发生[32]。经典的TGF-β/TGF-βR/Smad2信号通路可从表观遗传水平上改变EMT相关基因的表达[33],非经典的Smad非依赖性信号途径则经由G蛋白偶联受体、MAPKs、PI3K及NF-κB信号通路作用于Snail和Slug等转录因子,由此下调E-cadhrein和ZO-1表达和上调Vimentin表达,进而诱导肿瘤细胞发生EMT[34~35]。以上研究结果提示,TAMs分泌的TGF-β能通过多种途径诱导EMT的发生。
3 TAM与肿瘤组织基底膜破坏和细胞外基质重塑
肿瘤组织基底膜的破坏以及细胞外基质的重塑为肿瘤细胞的转移所必须,这一过程需要能降解细胞外基质蛋白的丝氨酸蛋白酶、基质金属蛋白酶和半胱氨酸组织蛋白酶等的参与,它们的异常高表达与多种肿瘤患者的低生存率和不良预后有直接关系。上述蛋白水解酶可由肿瘤细胞分泌,但更多的是由肿瘤间质的成纤维细胞和浸润的免疫细胞所分泌。
Mohamed等[36]对乳腺癌的研究发现,肿瘤细胞产生的IL-6能增加TAMs分泌蛋白水解酶CTSB(一种半胱氨酸蛋白酶),MMP-2和 MMP-9的能力,它们可直接作用于细胞间的连接,改变细胞外基质(ECM)成分并破坏基底膜,用抗IL-6中和抗体可阻断IL-6的上述功能。Wang等[37]对原发性肺癌的研究发现,肺癌组织中TAM高表达并分泌MMP-9和尿激酶型纤溶酶原激活物(uPA),二者均能促进细胞外基质降解。用无血清培养基培养从肺癌组织中分离的TAM后,获得条件化的培养上清,再将这种上清用于SPC-A1、H460和A549肺癌细胞株的培养,结果发现,上述TAM条件化的培养上清能显著性增加肿瘤细胞的侵袭和转移能力,用抗u-PA和抗MMP-9抗体能阻断这一过程。
4 结语
TAM在介导肿瘤侵袭和转移过程中的关键性作用,使得TAM成为肿瘤靶向治疗的重要靶点,通过诱导TAM发生M1表型转化,或抑制TAM中与促肿瘤血管生成、促EMT发生和促细胞外基质降解的细胞因子的合成与释放,可望达到有效抑制肿瘤生长和防止肿瘤细胞侵袭和转移的目的。
[1] Biswas S K, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm[J]. Nat Immunol, 2010, 11(10): 889-896.
[2] Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795.
[3] Heath V L, Bicknell R. Anticancer strategies involving the vasculature[J]. Nat Rev Clin Oncol, 2009, 6(7): 395-404.
[4] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62.
[5] Qian C N, Huang D, Wondergem B, et al. Complexity of tumor vasculature in clear cell renal cell carcinoma[J]. Cancer, 2009, 115(10 Suppl): 2282-2289.
[6] Lin E Y, Li J F, Gnatovskiy L, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer[J]. Cancer Res, 2006, 66(23): 11238-11246.
[7] Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis[J]. Proc Natl Acad Sci USA, 2006, 103(33): 12493-12498.
[8] Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice[J]. J Clin Invest, 2008, 118(10): 3367-3377.
[9] Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha[J]. Nature, 2008, 453(7196): 807-811.
[10] De Palma M, Venneri M A, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors[J]. Cancer Cell, 2005, 8(3): 211-226.
[11] Coffelt S B, Tal A O, Scholz A, et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes andaugments their inherent proangiogenic functions[J]. Cancer Res, 2010, 70(13): 5270-5280.
[12] Lewis C E, De Palma M, Naldini L. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2[J]. Cancer Res, 2007, 67(18): 8429-8432.
[13] Capobianco A, Monno A, Cottone L, et al. Proangiogenic Tie2macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease[J]. Am J Pathol, 2011, 179(5): 2651-2659.
[14] Polyak K, Weinberg R A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits[J]. Nat Rev Cancer, 2009, 9(4): 265-273.
[15] Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells[J]. J Clin Invest, 2009, 119(6): 1417-1419.
[16] Stockinger A, Eger A, Wolf J, et al. E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity[J]. J Cell Biol, 2001, 154(6): 1185-1196.
[17] Thiery J P, Acloque H, Huang R Y, et al. Epithelialmesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
[18] Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis[J]. Cell, 2004, 118(3): 277-279.
[19] Chaffer C L, Weinberg R A. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024): 1559-1564.
[20] Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer[J]. Oncogene, 2010, 29(34): 4741-4751.
[21] López-Novoa J M, Nieto M A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression[J]. EMBO Mol Med, 2009, 1(6-7): 303-314.
[22] Oft M, Peli J, Rudaz C, et al. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells[J]. Genes Dev, 1996, 10(19): 2462-2477.
[23] Bates R C, Mercurio A M. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids[J]. Mol Biol Cell, 2003, 14(5): 1790-1800.
[24] Karhadkar S S, Bova G S, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis[J]. Nature, 2004, 431(7009): 707-712.
[25] Wu Y, Deng J, Rychahou P G, et al. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion[J]. Cancer Cell, 2009, 15(5): 416-428.
[26] Cheng G Z, Zhang W Z, Sun M, et al. Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function[J]. J Biol Chem, 2008, 283(21): 14665-14673.
[27] Sullivan N J, Sasser A K, Axel A E, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells[J]. Oncogene, 2009, 28(33): 2940-2947.
[28] Wu Y, Zhou B P. TNF-alpha/NF-kappa B/Snail pathway in cancer cell migration and invasion[J]. Br J Cancer, 2010, 102(4): 639-644.
[29] Lin K, Baritaki S, Militello L, et al. The role of B-RAF mutations in melanoma and the induction of EMT via dysregulation of the NF-κB/Snail/RKIP/PTEN circuit[J]. Genes Cancer, 2010, 1(5): 409-420.
[30] Li Q Q, Chen Z Q, Cao X X, et al. Involvement of NF-κB/ miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells[J]. Cell Death Differ, 2011, 18(1): 16-25.
[31] Blackwell T S, Christman J W. The role of nuclear factorkappa B in cytokine gene regulation[J]. Am J Respir Cell Mol Biol, 1997, 17(1): 3-9.
[32] de Graauw M, Van Miltenburg M H, Schmidt M K, et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells[J]. Proc Natl Acad Sci USA, 2010, 107(14): 6340-6345.
[33] Papageorgis P, Lambert A W, Ozturk S, et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression[J]. Cancer Res, 2010, 70(3): 968-978.
[34] Zavadil J, Bitzer M, Liang D, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta[J]. Proc Natl Acad Sci USA, 2001, 98(12): 6686-6691.
[35] Arsura M, Panta G R, Bilyeu J D, et al. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation[J]. Oncogene, 2003, 22(3): 412-425.
[36] Mohamed M M, Cavallo-Medved D, Rudy D, et al. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes[J]. Cell Physiol Biochem, 2010, 25(2-3): 315-324.
[37] Wang R, Zhang J, Chen S, et al. Tumor-associated macrophages provide a suitable microenvironment for nonsmall lung cancer invasion and progression[J]. Lung Cancer, 2011, 74(2): 188-196.
The metastasis-promoting roles of tumor-associated macrophages
DU Shenglin, WANG Yanlin★
(Three Gorges University Medical College, Institute of Molecular Biology, Hubei, Yichang 443002, China)
Under the stimulation of different cytokines, tumor-associated macrophages (TAM) immersed into the tumor microenvironment can be differentiated into M1 macrophage with anti-tumor function and M2 macrophage with tumor-promoting function. M2 macrophage is the major type of TAM in the majority of tumors. It is involved in the multiple metastasis-related processes, such as tumor angiogenesis, breakdown of the basement membrane, remodeling of the extracellular matrix and tumor cell's epithelial-mesenchymal transition. So that TAM has become an important target for tumor targeting therapy. This article mainly discusses the interaction between TAM and tumor cells and its underlying molecular mechanisms in promoting tumor metastasis.
Tumor; Metastasis; Tumor-associated macrophage
国家自然科学基金资助项目(30973445)
三峡大学医学院,三峡大学分子生物学研究所,湖北,宜昌 443002
★通讯作者:王艳林,E-mail: fzswangyl@ctgu.edu.cn