APP下载

非线性离散周期边值问题的可解性

2012-12-26董士杰

河北科技大学学报 2012年5期
关键词:解性四阶边值问题

董士杰

(军械工程学院基础部,河北石家庄 050003)

非线性离散周期边值问题的可解性

董士杰

(军械工程学院基础部,河北石家庄 050003)

在非线性项f(u)在原点满足渐近线性增长、无穷远处满足超线性或次线性增长条件下,研究了二阶非线性离散周期边值问题的可解性解。应用Robinowitz全局分歧定理,给出了边值问题正解全局行为的完整描述,并确定了参数的最佳区间。

周期边值问题;分歧;Green函数;解

常微分方程边值问题起源于各种不同的应用数学和物理领域。许多作者应用不动点定理、度理论、临界点理论研究了非线性边值问题[1-8]。MA Ru-yun等在非线性项f(u)在原点和无穷远处满足渐近线性增长条件下,研究了二阶非线性离散周期边值问题

1 预备知识

2 主要结论

[1]WANG Hai-yan.Positive periodic solutions for functional differential equations[J].J Differential Equations,2004,202(26):615-627.

[2]CHU J,TORRES P J,ZHANG M.Periodic solutions of second order non-autonomous singular dynamical systems[J].J Differential Equations,2007,239(1):196-212.

[3]YU J,GUO E.Multiplicity results for periodic solutions to delay differential equations via critical point theory[J].J Differential Equations,2005,218(1):15-35.

[4]DONG Shi-jie,GE Wei-gao.Positive solutions for quasilinear second order differential equation[J].Applicable Analysis,2005,84(12):1 221-1 229.

[5]董士杰,周长杰.带p-Laplacian算子时滞微分方程多点边值问题的正解[J].河北科技大学学报(Journal of Hebei University of Science and Technology),2010,31(5):385-389.

[6]索秀云,郭少聪,张继叶,等.四阶非局部边值问题方程组正解的存在性[J].河北科技大学学报(Journal of Hebei University of Science and Technology),2012,33(3):197-201.

[7]杨 飞,刘玉敬,郭彦平.含有一阶导数的非局部四阶边值问题正解的存在性[J].河北科技大学学报(Journal of Hebei University of Science and Technology),2012,33(4):283-289.

[8]MA Ru-yun,MA Hui-li.Positive solutions of nonlinear discrete periodic boundary value problems[J].Comput Math Appl,2010,59(1):136-141.

[9]ATICI F M,GUSEINOV G S.Positive periodic solutions for nonlinear difference equations with periodic coefficients[J].J Math Anal Appl,1999,232:166-182.

[10]RABINOWITZ P H.Some global results for nonlinear eigenvalue problems[J].J Funct Anal,1971,7:487-513.

Solvability for nonliner discrete periodic boundary value problems

DONG Shi-jie
(Department of Basic Courses,Ordnance Engineering College,Shijiazhuang Hebei 050003,China)

Under the condition that nonlinearityf(u)satisfies asymptotically linear growth at the origin and sublinear growth or suplinear growth at the infinity,the solvabitity for nonliner discrete periodic boundary value problems are discussed.By using Robinowitz global bifurcation theorem,a complete description of the global behavior of positive solution for the boundary value problem is given,and the optimal interval of a positive parameter is determined.

periodic boundary value problem;bifurcation;Green's function;solution

O175.8 MSC(2010)主题分类:34B05

A

1008-1542(2012)05-0381-03

2012-03-16;

2012-09-01;责任编辑:张 军

国家自然科学基金资助项目(11071053);河北省自然科学基金资助项目(A2009001426)

董士杰(1970-),男,河北深县人,讲师,硕士,主要从事应用微分方程方面的研究。

猜你喜欢

解性四阶边值问题
四阶p-广义Benney-Luke方程的初值问题
临界Schrödinger映射非齐次初边值问题的有限差分格式
k-Hessian方程径向解的存在性与多解性
带有积分边界条件的奇异摄动边值问题的渐近解
R2上对偶Minkowski问题的可解性
具衰退记忆的四阶拟抛物方程的长时间行为
方程的可解性
非线性m点边值问题的多重正解
∑*-嵌入子群对有限群的可解性的影响
四阶累积量谱线增强方法的改进仿真研究