APP下载

非负矩阵Hadam ard积和M-矩阵Fan积的特征值界的估计

2012-07-05周平李耀堂

纯粹数学与应用数学 2012年6期
关键词:周平云南大学文山

周平,李耀堂

(1.文山学院数理系,云南 文山 663000;2.云南大学数学与统计学院,云南 昆明 650091)

非负矩阵Hadam ard积和M-矩阵Fan积的特征值界的估计

周平1,李耀堂2

(1.文山学院数理系,云南 文山 663000;2.云南大学数学与统计学院,云南 昆明 650091)

矩阵的Hadamard积和Fan积是矩阵理论研究的重要问题之一.对于两个非负矩阵A和B的Hadamard积,给出了它的谱半径上界的两个新的估计式;同时对于两个非奇异M-矩阵A和B的Fan积,给出了它的最小特征值下界的两个新的估计式;算例表明,所得估计式在某些情况下比现有估计式更为精确,并且这些估计式都只依赖于矩阵A和B的元素,更容易计算.

非负矩阵;M-矩阵;Hadamard积;Fan积;谱半径;最小特征值

1 预备知识

2 两个非负矩阵的H adam ard积的谱半径的上界

3 q(A⋆B)的下界

参考文献

[1]陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.

[2]程光辉,成孝予,黄廷祝.M-矩阵和H-矩阵在Fan积下的Oppenheim型不等式[J].纯粹数学与应用数学, 2006,22(2):253-255.

[3]Horn R A,Johnson C R.Topic in M atrix Analysis[M].New York:Cambridge University Press,1991.

[4]杨忠鹏,冯晓霞.两个 Herm itian矩阵的 Hadamard乘积的特征值估计 [J].纯粹数学与应用数学,2001, 17(1):86-89.

[5]Ljiljana Cvetkovic.H-m atrix theory and eigenvalue localization[J].Num er.A lgor.,2006,42:229-245.

[6] 李艳艳,李耀堂.矩阵 Hadamard积和 Fan积的特征值界的估计 [J].云南大学学报:自然科学版, 2010,32(2):125-129.

[7]Berman A,Plemmons R J.Nonnegative Matrices in the Mathematical Sciences[M].New York:Academ ic Press,1979.

[8]Fang M Z.Bounds on eigenvalues of Hadamard product and the Fan product ofmatrices[J].Linear A lgebra and its App lications,2007,425:7-15.

[9]Huang R.Som e inequalities for the Hadam ard product and the Fan product ofm atrices[J].Linear A lgebra and its App lications,2008,428:1551-1559.

[10]Liu Q B,Chen G L.On two inequalities for the Hadam ard p roduct and the Fan p roduct of m atrices[J]. Linear A lgebra and its App lications,2009,431:974-984.

[11]Li Y T,Li Y Y,W ang R W,et al.Som e new bounds on eigenvalues of the Hadam ard product and the Fan p roduct ofmatrices[J].Linear A lgebra and its App lications,2010,432:536-545.

[12]Horn R A,Johnson C R.Topic in M atrix Analysis[M].Beijing:Peop le′s Posts and Telecommunications Press,2005.

Estimating of bounds on eigenvalues of the H adam ard p roduct for nonnegative m atrices and the Fan p roduct of M-m atrices

Zhou Ping1,Li Yaotang2

(1.School of M athem atics and Physics,Wenshan University,Wenshan 663000,China; 2.School of M athem atics and Statistics,Yunnan University,Kunm ing 650091,China)

The Hadamard p roduct and the Fan product ofmatrices are im portant prob lem s in thematrices theories.For the Hadam ard product of two nonnegative m atrices A and B,two new upper bounds of the spectral radius are given.For the Fan p roduct of two M-m atrices A and B,two new lower bounds of the smallest eigenvalues are given.The given numerical exam p les show that these estimating formulas im prove several existing resu lts in som e cases,and these bounds are easier to calcu late for they are on ly depending on the entries ofm atrices A and B.

nonnegativematrix,M-matrix,Hadamard product,Fan p roduct,spectral radius, sm allest eigenvalue

O151.21

A

1008-5513(2012)06-0826-08

2011-12-03.

国家自然科学基金(10961027).

周平(1987-),硕士,助教,研究方向:矩阵理论及其应用研究.

李耀堂(1958-),博士,教授,研究方向:数值计算及其应用研究.

2010 M SC:15A 42,15A 69

猜你喜欢

周平云南大学文山
Characteristics of laser-induced breakdown spectroscopy of liquid slag
云南大学作品欣赏
诗与象
诗与学
《云南大学学报(自然科学报)》论文版权授权确认书
《云南大学学报(自然科学版)》2020年评选优秀学术论文
云南大学历史博物馆简介(续)
遗产作诱饵“替夫征婚”,单身女子落入圈套
Holocene paleoearthquake activity along the 2008 Wenchuan earthquake ruptures of the Beichuan and Pengguan faults
“面霸”周平