广义Ferm at商中的平方数和立方数
2012-07-05李江华
李江华
(西安理工大学理学院,陕西 西安 710048)
广义Ferm at商中的平方数和立方数
李江华
(西安理工大学理学院,陕西 西安 710048)
设p是奇素数,a和b是适合a>b,gcd(a,b)=1以及pab的正整数.在这些条件下讨论了一类广义Fermat商为完全平方及完全立方问题.利用初等方法以及三项Diophantine方程的最新结果,证明了当p>13时,(ap-1−bp-1)/p不是平方数;当p>7时,(ap-1−bp-1)/p不是奇立方数.对广义Fermat商的方幂问题做出了实质性进展.
广义Fermat商;平方数;立方数;三项Diophantine方程
1 引言及结论
2 若干引理
3 定理1.1的证明
4 定理1.2的证明
[1]华罗庚.数论导引[M].北京:科学出版社,1979.
[2]Cao Z F,Pan J Y.On the diophantine equation x2p−D y2=1 and Ferm at quotient Qp(m)[J].哈尔滨工业大学学报,1993,25(1):119-121.
[3]Osada H,Terai N.Generalization of Lucas′theorem for Ferm at quotient[J].C.R.M ath.Rep.Acad.Sci. Canad.,1989,11(2):115-120.
[4]Terai N.Generalization of Lucas′theorem for Ferm at quotientⅡ[J].Tokyo J.M ath.,1990,13(3):277-287.
[5]Guy R K.Unsolved Problem s in Number Theory[M].3版.北京:科学出版社,2007.
[6]W iles A.M odular elliptic curves and Ferm at last theorem[J].Ann.of M ath.,1995,141(2):443-551.
[7]Taylor R,W iles A.Ring-theoretic properties of certain Hecke algebras[J].Ann.of M ath.,1995,141(2):553-572.
[8]Poonen B.Som e diophantine equations of the form xn+yn=zm[J].Acta.A rith.,1998,86(2):193-205.
[9]Ivorra W.Sur les equations xp+2βyp=z2et xp+2βyp=2z2[J].Acta.A rith.,2003,108(4):327-338.
[10]Darm on H,M erel L.W inding quotients and som e variants of Ferm at′s Last Theorem[J].J.Reine.Angew. M ath.,1997,490:81-100.
[11]贺光荣.D iophantine方程(am−1)(bn−1)=x2的一点注记[J].纯粹数学与应用数学,2011,27(5):581-585.
The squares and cubes in generalized Ferm at quotients
Li Jianghua
(College of Science,X i′an University of Technology,X i′an 710048,China)
Let p be an odd prim e,and let a,b be positive integers such that a>b,gcd(a,b)=1 and pab.In this paper we discussed the generalized Ferm at quotient problem s under these conditions.Using the elem entary method and some recent results on ternary Diophantine equations.Proved that if p>13,then(ap−1−bp−1)/p is not a square,and if p>7,then it is not an odd cube.It hasm ade som e p rogress for the generalized Ferm at quotient prob lem s.
generalized Fermat quotient,square,cube,ternary Diophantine equation
O156.4
A
1008-5513(2012)06-0774-05
2012-05-21.
陕西省自然科学基金(2012K 06-43);陕西省教育厅专项计划基金(12JK 0874).
李江华(1980-),博士,研究方向:解析数论及其应用.
2010 M SC:11D 61
猜你喜欢
———理学院