《数值分析》教学策略研究
2012-04-29赵莹
赵莹
摘要: 文章从三个方面提出了提高数值分析课程的教学质量的方法,分别是采用启发式教学激发学生对这门课程的求知欲望,根据这门课程的特点引入数学建模的思想来培养学生的兴趣,通过Matlab增强教学效果,重视实践环节,培养学生的动手操作能力,为学习这门课程打下坚实的基础。
关键词: 数值分析数学建模Matlab
数值分析又称计算方法,是一门与计算机使用密切结合的实用性很强的一门课程,重点研究如何运用数值计算方法去处理实际工程问题,因此数值分析在科学研究、工程建设和经济建设等很多方面有着广泛的应用。在信息科学和计算机技术飞速发展的今天,这门课程中的数值方法更显得极其重要,但是对多数学校来说,还没有引起对这门课足够的重视,而且在数值分析的教学过程中都存在很多不足。不少学者也讨论过我国高校中数值分析课程的教学情况,其中存在一些普遍问题,例如学生理论学习模式化、实践能力不够、缺乏应用性,学习过程中学生感觉到枯燥或者学习效果不佳,学校软、硬件设施无法满足学生的上机实习等。如何更好地开展这门课程的教学工作,对于我们来说是一个巨大的挑战。下面我们来谈谈在教学过程中遇到的几个问题。
1.理论基础知识扎实,同时采用启发式教学
课程中的很多公式是推导出来的,推导过程比较烦琐,得到的公式也比较冗长,而且比较难记,对于已经复杂并且很冗长的数值公式,还需要进一步进行抽象的理论分析,包括算法的收敛性如何,数值算法是否稳定并进行误差分析,以及分析算法的空间和时间复杂性等,同时还涉及如微积分、线性代数、常微分方程等。过多地强调数学理论证明,大多数的学生觉得这门课很难,学得很枯燥,也感觉不到乐趣,从而越来越厌烦学习这门课程。
因此,我们要将“因材施教”的理念落到实处。方法的讲授应该尽量地从实例中提出问题,引导学生去思考如何运用数学知识去构造解决的方法,然后给出相应的数学理论。并且,给出一种方法,可以换位思考,激发学生思考是否能用另外的已学方法来求解。这样不仅能复习已学的知识,而且能巩固各种知识之间的联系,还可以启发学生把学过的知识学以致用,真正了解学习带来的乐趣。
2.将数学建模的思想融入到教学过程中
数值分析是对实际问题的数值模拟方法的设计、分析与软件实现的理论基础。要解决具体的实际问题,首先需要建立起适当的数学模型,将实际问题的解决归结为相应的数学问题的求解,然后对所归结的数学问题建立相应的数值方法。这样就可以以实例启发学生弄清为什么要进行数值分析、应该如何引进数值方法进行分析,建立一种数值分析的方法后,哪些问题是值得且必须研究的。例如在汽车、飞机等的外形设计过程中,利用样条技术设计的外形越来越光滑、美观。学生了解了样条插值的实际应用背景后就会对样条插值的理论更感兴趣,也会更有动力来学。
将数学建模的思想融入到数值分析教学过程中,要求我们必须有一个合适的切入点,不能用数学建模课的内容过多占有数值分析课的教学,因此精选只涉及相应数值分析理论和方法而又能体现数学建模思想的内容,既能吸引学生又是学生以后可能碰到的案例,将其融入到数值分析课程中是十分重要的。下面具体举两个例子,插值方法可以引入人口增长的模型和设计公路平面曲线的问题,常微分方程的差分方法可以引入导弹追踪和估计水塔的流量问题,方程求根的迭代法可以引入一般战争模型,线性方程组的解法可以引入投入产出模型和小行星轨道问题等。
3.结合Matlab进行实践教学
在结合多媒体教学的过程中,尽量地在讲解数学模型的过程中,无论是问题的引入还是算法的讲解和实现,以及结果尽可能地转化成图形等一些可视的结果展示给学生,以激发学生的学习兴趣,引人入胜,Matlab软件的可视化功能能够实现这一点。
在计算机技术飞速发达的今天,只要有效地把教学过程和相关的计算机技术结合起来,就能够做到减轻教师教和学生学的负担,优化学习环境,实现高效教学。在一些数值分析教材中一些常用的算法都已经有了现成的程序,因此在授课的过程中,对这些算法进行展示时,要让学生从中学会如何将一个算法转变成一段程序。鼓励学生自己根据算法写出程序流程图,然后使用Matlab语言将其转变成程序,将自己所得程序与课本中的结果进行比较分析,这个过程有助于学生更好地理解算法,增强学生动手实践的自信心。
4.结语
数值分析是研究数学模型的数值计算方法。随着电子计算机的迅速发展、普及,以及新型数值软件的不断开发,数值分析的理论和方法无论是在高科技领域还是在传统学科领域,其作用和影响都越来越大,实际上它已成为科学工作者和工程技术人员必备的知识和工具。
对于理工科的本科学生而言,它的理论和实践知识对学生的要求都比较高。因此要让学生学好这门课程,需要在教学中采用一些技巧性的教学方法,比如采用启发式的教学方法,融入数学建模的思想,以及结合Matlab进行实践教学等。这样可以调动学生主动学习的积极性,提高学生的综合素质,使学生真正学好这门课程。
参考文献:
[1]赵景军,吴勃英.关于数值分析教学的几点探讨[J].大学数学,2005,21(3):28-30.
[2]孙亮.数值分析方法课程的特点与思想[J].工科数学,2002,18(1):84-86.
[3]伍渝江,尤传华,丁方允.数值分析课程的继承与改革[J].高等理科教育,2000,8(1):46-49.
[4]张坚民.建构主义教学理论在《数值分析与组合数学》教学中的运用[J].远程教育杂志,2004,22(2):32-34.