每搏变异度在肝叶切除术中应用的可行性
2012-04-08综述赵建农审校
谢 海 综述,赵建农,陈 勇 审校
(1.海南医学院附属医院麻醉科,海南 海口 570102;2.海南省人民医院神经外科,海南 海口 570311;3.海南省人民医院麻醉科,海南 海口 570311)
肝内血管分布广泛复杂,肝叶切除术中大量出血一直是手术面临的主要问题。大量出血可导致血流动力学不稳定,增加并发症的发生率和手术麻醉风险。而大量输血可增加传染性疾病、凝血功能障碍等的发生率,抑制人体免疫功能导致术后肿瘤的早期复发[1-2]。因此如何减少失血量的方法一直是肝切除手术的一个重要研究方向。
1 肝叶切除术和低中心静脉压
近年来国内外一些有关降低中心静脉压减少肝切除术中的出血量的研究逐渐增多[3-9],其理论基础可能是:在行肝叶切除时,阻断肝门后,肝静脉、肝窦成为切除肝实质过程中主要的出血因素,肝静脉和肝窦压力大小直接决定了出血量的多少,肝静脉压力又受到下腔静脉压(IVCP)压力的影响,降低IVCP可降低肝静脉压力减少出血,而IVCP与中心静脉压(CVP)的压力几乎是一致的[10]。因此,可通过降低CVP达到降低IVCP的目的,最终降低肝静脉和肝窦的压力,使肝血管壁内外压力差和血管半径都降低,最终能明显减少患者术中的出血量。低中心静脉压(LCVP)技术除了能减少出血量,使无意损伤肝静脉的大量出血更容易控制[11],还能缩短手术时间,减少并发症发生,缩短术后住院时间[4-12]。目前LCVP是通过麻醉深度调节、降压药物控制、限制液体输注等方法将CVP控制在≤5 cmH2O(1 cmH2O=0.133 kPa)的水平,这是通过LCVP应用于肝叶切除手术中失血量的分析得出的[8,11,13-14]。Rees等[4]报道CVP控制于0~5 cmH2O的水平,很少会导致全身低血压发生的情况。LCVP技术能够应用于临床,在降低CVP的同时不降低动脉血压,不发生全身低血压状况,达到减少出血的目的。然而CVP作为心脏对回心血量的泵出能力的反映和右心房的前负荷的指标有一定的局限性。首先,它是静态的、通过压力代容积方法间接反映心脏前负荷的指标,静态血流动力学监测有较大的局限性,会带来错误的临床决策[15];其次,CVP高低取决于心室顺应性、血容量、静脉血管张力、胸腔内压、静脉回流血量和肺循环阻力等因素,尤以静脉回流血量与右室排血量之间的平衡关系最为重要。再次,CVP数值会受到手术体位、手术操作和机械通气等因素的影响[16-17]。术中肝脏拉钩对膈肌的牵拉使呼吸受限,胸腔压力升高,CVP升高;手术过程中阻断肝脏周围血管静脉回流减少,中心静脉受压扭转,回心血量减少,CVP降低等。总之,应用LCVP技术减少肝叶切除术出血量时,如果单纯以CVP作为评判指标可能会给临床准确判断带来困难,甚至导致临床决策错误。因此有必要寻找一种能辅助、联合CVP的准确容量监测手段。
2 每搏量变异度(SVV)
SVV是近年来预测机体对于液体治疗反应性的动态的容量监测指数,通过计算CO所得,它能很好地反映患者的血容量状况[18-23]。SVV是在一定时间(至少一个呼吸周期)内,每次心脏搏动时的每搏量(SV),计算出它们在该段时间内的变异程度(以百分数表示),以此预测心血管系统对液体负荷的反应。机械通气过程中呼吸对循环的影响是SVV的基础,通气过程中随着胸腔内压力反复增减的周期性增减变化,回心血量也随之变化,所以导致左室每搏量也发生周期性增减改变。机械通气吸气相引起胸腔内压力增高,一方面肺静脉毛细血管床内大量血液被挤入左心室,左心室的血量此刻立即增加,SV上升,即肺静脉系统血量输出上升;另一方面肺静脉血管床被挤压,使肺血管阻力增加,腔静脉回流受阻,即肺静脉血量供给下降;输出的上升和供给的下降,肺静脉系统血量空虚,左心室在2~3个心动周期后表现出SV的下降[24]。所以接受正压机械通气的患者,其左心室的每搏量会在吸气相时增加到最大,呼气相减少到最小,这种周期性变化反映了左室舒张末容积的大小,反映了血容量的多少。SV的最大值与最小值相差越大,说明有效循环血量越不足,在此情况下,如果增加容量负荷,CO增加的程度就会更明显。SVV能很好地反映患者的血容量状况,是心脏前负荷反应性的敏感指标[25-26]。其计算公式为SVV=(SVmax-SVmin)/SVmean。SVV的正常参考值<13%,其数值越大,给予容量负荷后的CO增加得越多,表明有效血容量不足越明显。如果SVV<13%,那么给予容量负荷后就很难出现CO的增加,应避免输入过多液体。许多文献报道和其他传统监测指标(HR、MAP、CVP、PAD、PAOP)相比,SVV有更高的敏感性与特异性[27-29]。其优于心脏前负荷的静态参数,特别是对于优化心输出量、保证重要脏器血供更有优势[30]。总之,SVV作为动态的容量监测指数,能够准确地预测手术中心脏对容量负荷的反应性及前负荷状态。
3 FloTrac/Vigileo心输出量监测系统
临床上目前用于连续监测SVV的方法主要是动脉压力波形分析技术,包括Flotrac/Vigileo系统和PiCCOplus系统,具有微创、设置简单快速等特点。PiCCOplus系统计算CO是通过测量动脉压力波形收缩期部分的面积,并用主动脉阻抗除以收缩期面积,得到相应结果。两者监测SVV都是获取单位时间内的SV,通过公式SVV=(SVmax-SVmin)/SVmean计算所得。其中FloTrac/Vigileo系统(爱德华生命科学世界贸易公司)由FloTrac传感器和Vigileo监测仪组成,可以在无需校正,操作简单,微创的情况下为临床医生提供相关血流动力学监测指标。其2005年开始用于临床血流动力学监测,运用连接于动脉压力导管的Flo-Trac压力传感器,通过桡动脉或股动脉导管采集患者外周动脉压力波形,结合患者年龄、性别、身高、体重、体表面积运算分析出血流动力学指标包括CO/Cl、SV/SVI、SVV、SVR/SVRI(结合 CVP 计算)[31]。相比“金标准”温度稀释法操作复杂,有创伤性,费用昂贵、易引起并发症等[32]不足,该法具有微创、自动、连续、重复性好、操作简单、使用方便等优点,适用于手术室、ICU和急诊室等地方。国外学者[22,33-35]通过Flotrac/Vigileo进行的APCO监测与温度稀释法PAC测心排量(CCO)进行比较,结果显示,两种方法CO的监测结果具有很好的相关性。当然Flotrac/Vigileo系统有其局限性,它不适合监测严重心律失常患者和有瓣膜疾病的患者[36]。而SVV可以应用于血管活性药物治疗下的监测[37],但必须是机械通气的患者,且潮气量和PEEP不能过大[38-39],强烈的疼痛刺激对其有影响[40]。因此,在LCVP下肝叶切除术中,可以通过FloTrac/Vigileo心输出量监测仪监测SVV的变化,同时监测 CO/Cl、SV/SVI和 SVR/SVRI,不但有连续监测和反应敏感的优势,而且还能全面了解血流动力学变化,是一种可行的、更安全有效的方法。
综上所述,SVV是动态的功能性指标,这种依靠循环系统对液体治疗反应判断其容量状态的功能性监测方式可使LCVP减少肝叶切除术出血的临床治疗更为准确、有效,患者更安全。所以,引入新指标SVV,作为一种能辅助、联合CVP的准确容量监测手段成为必要,将为临床上辅助、联合LCVP应用于肝叶切除术减少出血提供了新的、更全面的、更安全的临床思路。
[1] Yamamoto J,Kosuge T,Takayama T,et al.Perioperative blood transfusion promotes recurrence of hepatocellular carcinoma after hepatectomy[J].Surgery,1994,115(3):303-309.
[2]Li CH,Chau GY,Lui WY,et al.Risk factors associated with intraoperative major blood loss in patients with hepatocellular carcinoma who underwent hepatic resection[J].J Chin Med Assoc,2003,66(11):669-675.
[3]常业恬,曹德权,陈艳平,等.控制性低中心静脉压应用于肝叶切除患者的观察[J].中华麻醉学杂志,2002,22(12):761-762.
[4]Rees M,Plant G,Wells J,et al.One hundred and fifty hepatic resections:evolution of technique towards bloodless surgery[J].Br J Surg,1996,83(11):1526-1529.
[5]Bhattacharya S,Jackson DJ,Beard CI,et al.Central venous pressure and its effects on blood loss during liver resection[J].Br J Surg,1999,86(2):282-283.
[6]McCallduct J,Koea J,Gunn K,et al.Liver resections in Auckland 1998-2001:mortality,morbidity and blood prouse[J].NZ Med J,2001,114:516-519.
[7]Eid EA,Sheta SA,Mansour E.Low central venous pressure anesthesia in major hepatic resection[J].Middle East J Anesthesiol,2005,18:367-377.
[8]Johnson M,Mannar R,Wu AV.Correlation between blood loss and inferior vena caval pressure during liver resection[J].Br J Surg,1998,85(2):188-190.
[9]Smyrniotis V,Kostopanagiotou G,Theodoraki K,et al.The role of central venous pressure and type of vascular control in blood loss during major liver resections[J].Am J Surg,2004,187(3):398-402.
[10]Walsh JT,Hildick-Smith DJ,Newell SA,et al.Comparison of central venous and inferior vena caval pressures[J].Am J Cardiol,2000,85(4):518-520.
[11]Jones RM,Moulton CE,Hardy KJ.Central venous pressure and its effect on blood loss during liver resection[J].Br J Surg,1998,85(8):1058-1060.
[12]Melendez JA,Arslan V,Fischer ME,et al.Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia:blood loss,blood transfusion,and the risk of postoperative renal dysfunction[J].JAm Coll Surg,1998,187(6):620-625.
[13]Cunningham JD,Fong Y,Shriver C,et al.One hundred consecutive hepatic resection:blood loss,transfusion,and operative technique[J].Arch Surg,1994,129(10):1050-1056.
[14]Wang WD,Liang LJ,Huang XQ,et al.Low central venous pressure reduces blood loss in hepatectomy[J].World J Gastroenterol,2006,12:935-939.
[15]Lichtwarck-Aschoff M,Zeravik J,Pfeiffer UJ.Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation[J].Intensive Care Med,1992,18:142-147.
[16]Marik PE,Baram M,Vahid B.Does central venous pressure predict fluid responsiveness?A systematic review of the literature and the tale of seven mares[J].Chest,2008,134:172-178.
[17]Weyland A,Grüne F.Cardiac preload and central venous pressure[J].Anaesthesist,2009,58:506-512.
[18]De Backer D.Stroke volume variations[J].Minerva Anestesiol,2003,69:285-288.
[19]Pinsky MR,Payen D.Functional hemodynamic monitoring[J].Crit Care,2005,9:566-572.
[20]Cavallaro F,Sandroni C,Antonelli M.Functional hemodynamic monitoring and dynamic indices of fluid responsiveness[J].MinervaAnestesiol,2008,74:123-135.
[21]Manecke GR,Auger WR.Cardiac output determination from thearterial pressure wave:clinical testing of a novel algorithm that does not require calibration[J].J Cardiothorac Vasc Anesth,2007,21:3-7.
[22]McGee WT,Horswell JL,Calderon J.Validation of a continuous cardiac output measurement using arterial pressure waveforms[J].Critical Care,2005,9:24-25.
[23]Manecke GR.Edwards FloTrac sensor and Vigileo monitor:easy,accurate,reliable cardiac output assessment using the arterial pulsewave[J].Expert Rev Med Devices,2005,2:523-527.
[24]Frédéric M,Jean LT.Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation[J].Crit Care,2000,4:282-289.
[25]Kobayashi M,Koh M,Irinoda T,et al.Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy[J].Ann Surg Oncol,2009,16(5):1371-1377.
[26]Wiesenack C,Fiegl C,Keyser A,et al.Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients[J].Eur JAnaesthesiol,2005,22:658-665.
[27]Benington S,Ferris P,Nirmalan M.Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy[J].Eur JAnaesthesiol,2009,26(11):893-905.
[28]Marik PE,Cavallazzi R,Vasu T,et al.Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients:a systematic review of the literature[J].Crit Care Med,2009,37(9):2642-2647.
[29]刘松桥,邱海波,杨 毅,等.每搏输出量变异度和胸腔内血容量指数对失血性休克犬容量状态的评价[J].中华外科杂志,2006,44(17):1216-1219.
[30]Wiesenack C,Fiegl C,Keyser A,et al.Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients[J].Eur JAnaesthesiol,2005,22:658-665.
[31]Pratt B,Roteliuk L,Hatib F,et al.Calculating arterial pressure-based cardiac output(APCO)using a novel measurement and analysis method[J].Biomed Instrum Technol,2007,41:403-411.
[32]Romano SM,Pistolesi M.Assessment of cardiac output from systemic arterial pressure in humans[J].Crit Care Med,2002,30:1834-1841.
[33]Cecconi M,Dawson D,Casaretti R,et al.prospective study of the accuracy and precision of continuous cardiac output monitoring devices as compared to intermittent thermodilution[J].Minerva Anestesiol,2010,76(12):1010-1017.
[34]Terada T,Usami A,Iwasaki R,et al.A pilot assessment of the Flo-Trac cardiac output monitoring system comparing with pulmonary artery catheter method by three versions[J].Masui,2009,58(11):1418-1423.
[35]Cannesson M,Attof Y,Rosamel P,et al.Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements[J].Eur JAnaesthesiol,2007,2 4(10):832-839.
[36]McGee WT,Horswell JL,Calderon J,et al.Validation of a continuous,arterial pressure-based cardiac output measurement:a multicenter,prospective clinical trial[J].Crit Care,2007,11:R105-107.
[37]Hadian M,Severyn DA,Pinsky MR.The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients[J].J Crit Care,2010,26(3):328.e1-8.
[38]Reuter DA,Bayerlein J,Goepfert MS,et al.Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients[J].Intensive Care Med,2003,29:476-480.
[39]da Silva Ramos FJ,de Oliveira EM,Park M,et al.Heart-lung interactions with different ventilatory settings during acute lung injury and hypovolaemia:an experimental study[J].Br J Anaesth,2011,106(3):394-402.
[40]Lorsomradee S,Lorsomradee S,Cromheecke S,et al.Uncalibrated arterial pulse contour analysis versus continuous thermodilution technique:effects of alterations in arterial waveform[J].J Cardiothorac VascAnesth,2007,21(5):636-643.