浅谈遥感技术在地质测绘中的应用
2012-03-23蒋焕云
蒋焕云
中图分类号: P237文献标识码:A文章编号:
一、遥感技术的发展
1.1遥感的工作原理
“遥感”,顾名思义,就是遥远地感知。人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射信息和能量,其中有一种人类已经认识到的形式——电磁波,并且发现不同物体的电磁波特性是不同的。遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。遥感的实现还需要遥感平台,像卫星、飞机、气球等,它们的作用就是稳定地运载传感器。当在地面试验时,还会用到像三角架这样简单的遥感平台。针对不同的应用和波段范围,人们已经研究出很多种传感器,探测和接收物体在可见光、红外线和微波范围内的电磁辐射。传感器会把这些电磁辐射按照一定的规律转换为原始图像。原始图像被地面站接收后,要经过一系列复杂的处理,才能提供给不同的用户使用。
1.2遥感技术的发展
遥感包括卫星遥感和航空遥感,航空遥感作为地形图测量的重要手段已在实践中得到了广泛的应用,卫星遥感用于测图也正在研究之中并取得一些意义重大的成果,基于遥感资料建立数字地面模型进而应用于测绘工作已获得了较多的应用。自20世纪初菜特兄弟发明人类历史上第一架飞机起,航空遥感就开始了它在军事上的应用,从1972年第一颗地球资源卫星发射升空以来,美国、法国、俄罗斯、欧空局、日本、印度、中国等国家都相继发射了众多对地观测卫星。遥感信息获取技术已从可见光发展到红外、微波:从单波段发展到多波段、多角度、多极化;从空间维扩展到时空维;从低分辨率发展到高分辨率甚至超高分辨率。遥感平台有地球同步轨道卫星、太阳同步卫星、太空飞船、航天飞机、探空火箭,并且还有高、中、低空飛机、升空气球和无人飞机等:传感器有框幅式光学相机,缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计、雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。
二、卫星遥感在测绘领域的应用
2.1测绘的发展
测绘,顾名思义就是测量并绘制地图。测绘成果在一般人眼里基本上就是纸质地形图,不过这只是对早期测绘的理解。随着计算机技术及测绘技术的发展,目前的测绘已经远远超脱出传统模拟产品的固有模式,向多品种(模拟及数字产品)、多用途、多种成果形式及高度集成化的方向迈进。当然,对卫星遥感影像资料的应用面也就日益广泛。
90年代中,国家测绘局根据国内外发展状况,在原有测绘产品的基础上,提出增加新的测绘产品模式,即4D产品(数字线划地图DLG、数字高程模型DEM、数字栅格地图DRG、数字正射影像图DOM)。航空摄影资料与卫星遥感资料的互补是4D特别是数字正射影像图制作的资料源。利用现有的遥感影像资料可以制作多种比例尺的数字正射影像图,如利用TM影像可制作30m分辨率的数字正射影像图,利用陆地—7影像可制作15m分辨率的数字正射影像图,利用斯波特影像可制作10m分辨率的数字正射影像图,利用依科诺斯影像可制作4m和1m分辨率的数字正射影像图等,从而极大地丰富了4D产品,为影像数据库建设提供了多分辨率、多层次的影像资源。同时,影像数据可作为GIS(地理信息系统)的背景地图,对GIS的深层次研究与应用提供了更直观的影像信息资源,从而也充实和发展了数据库本身,为规划、管理等部门的科学化决策提供了基础数据资料。
2.2卫星遥感在测绘领域的应用
利用卫星遥感影像更新数据库的过程,从某种意义上讲,就是监测并发现变化的过程。因此,各国均利用卫星遥感影像的优势,对各种感兴趣要素进行监测,如我国进行的土地利用调查及监测、城市变迁、灾情监测等。这些工作的开展,一定程度上为我国可持续发展战略的逐步实施提供了基础保证。
2.3应用的常规方法
利用遥感技术获取地面三维信息,常规的方法是立体摄影测量。由于雷达卫星具有全天时、全天候、不受云雾等恶劣天气和夜暗影响的特性,故随着雷达遥感的发展,合成孔径雷达(SAR)也被用作立体摄影测量。由于斑点噪声的存在,其使用也一度受到影响。近年发展起来的干涉合成孔径雷达技术(INSAR),提供了获取地面三维信息的全新方法,即利用干涉雷达提取地形数字高程模型(DEM)。该方法将大大改进数字高程模型(DEM)获取的传统模式,这是雷达遥感的最新领域,是遥感和摄影测量科学的前沿,目前还只处在进一步的研究之中,相信在几年内可以大规模应用在测绘及其他领域。
2.4遥感图像全数字测绘系统
遥感图像全数字测绘系统是利用航空、航天遥感图像提取战场地理环境和军事目标空间信息,进行全数字测绘作业的智能化综合信息处理系统,是我军首次自行设计与研制、具有自主版权的第一代全数字遥感测绘装备。该系统的研制成功实现了遥感测绘技术进入全数字阶段的跨越性和革命性转变,为我军数字化测绘保障提供了新型的换代技术装备,对于改变100多年来摄影测量基于硬拷贝图像的生产作业方式有重要意义。
与以往的测绘系统相比,该系统在影像匹配方面,能成功用于数字空中三角测量,提高了算法的速度和可靠性,有效地解决了卫星遥感影像匹配的技术难题;在微机环境下能实现单像和立体方式下的地形半自动测绘;在数字图像处理方面,能实现正射影像镶嵌中几何纠正和无缝辐射拼接的自动化;在地形三维可视化方面,实现了三维地形图的空间查询及分析和大区域地形数据、高分辨率遥感纹理图像的三维可视化;在数字城市三维景观方面,开发了基于多源遥感图像的数字城市三维显示实用技术;在航天影像摄影测量方面,还开发了三线阵推扫式影像的处理软件。
该系统配置合理、实用化程度高,总体技术水平已达到同类产品的国际先进水平,经进一步集成装备部队,将极大地改善我军作战测绘保障的网络化作业环境。
三、测绘新技术的发展
测绘新技术除了遥感技术以外,不可不提的便是GPS、GIS技术,下面对此进行简单论述:
3.1GPS的发展
全球定位系统(GPS)是美国从20世纪70年代开始研制,于1994年全面建成的利用导航卫星进行测时和测距,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,GPS的应用领域正在不断地开拓,目前,各种类型的GPS接收机体积越来越小,重量越来越轻,便于野外观测。GPS已遍及国民经济各种部门,并开始逐步深入人们的日常生活。GPS作为一项引起传统测绘观念重大变革的技术,已经成为大地测量的主要技术手段,也是最具潜力的全能型技术。GPS定位技术与常规地面测量定位相比,除具有对测站选择更灵活、更适应不利条件、全天候连续作业外。还具有比任何地面常规技术供数量更多、精度更高的数据信息。
3.2GIS的发展
地理信息系统作为多个学科、多种技术交叉融合的产物,至今只有40多年的历史。地理信息系统起源于20世纪60年代加拿大和美国学者的在土地和交通方面的地理信息研究。1998年1月31日美国前副总统戈尔在加利福尼亚科学中心的一次讲演,在该讲演中戈尔正式提出数字地球的概念。地理信息系统作为对空间地理分布有关的数据进行采集、处理、管理、分析的计算机技术系统,其发展和应用对测绘科学的发展意义重大,是现代测绘技术的重大技术支撑。
四、结语
现代科学技术发展的综合化整体方向极大地影响着现代测绘科学的发展趋势,这种趋势表现在现代测绘新理论的概括性增强,测绘新技术的技术综合程度提高,各专业学科之间的相互交叉与渗透,测绘学与其它门类科学的联系增强加大,测绘学吸收和移植其它学科成果的速度加快,这种学科内外的综合化发展,将使现代测绘学不断开拓出新的领域。
参考文献:
[1] 钱乐祥. 遥感数字图像处理与地理特征提取[M]. 北京:科学出版社,2004
[2]魏建华,张展,许月光.工程地质测绘中的几个研究对象[J].黑龙江水利科技,1999,(4).
[3] 王树功,黎夏,钟凯文,等. 遥感与GIS技术在湿地定量研究中的应用趋势分析[J]. 热带地理,2005,25(3):201-205.
[4] 陆贤东,顾和和,王飞. 网络RTK在地籍测量中应用分析[J].矿山测量,2008(2):18-24