APP下载

一类具偏差变元的p-Laplacian方程的周期解*

2012-03-06唐美兰刘心歌

关键词:变元美兰充分性

唐美兰,刘心歌

(中南大学数学与统计学院,湖南长沙 410083)

一类具偏差变元的p-Laplacian方程的周期解*

唐美兰,刘心歌†

(中南大学数学与统计学院,湖南长沙 410083)

应用Manásevich-Mawhin连续性定理,研究了具偏差变元的含有2个p-Laplacian算子的微分方程周期解的存在性,获得了周期解存在的新的充分性条件,并通过实例说明本文结论的有效性.

周期系统;p-Laplacian算子;周期解;存在性;Manásevich-Mawhin连续定理

近年来,Rayleigh方程、Liénard型方程、Duffing方程因其具有广泛的实际应用背景,很多学者对其周期解的存在性问题一直怀着强烈的兴趣,得到了很多结论[1-9].但因p-Laplacian算子的非线性,目前对具偏差变元的p-Laplacian方程周期解的存在性研究并不多.本文将研究含多个p-Laplacian算子的偏差变元p-Laplacian微分方程周期解的存在性问题.

1 引 理

考虑下列含多个p-Laplacian算子且具偏差变元的微分方程:

2π-周期解的存在性.其中f为定义在R上的实连续函数,p>p1>1,φp:R→R,φp(s)=|s|p-2s,s≠0,φp(0)=0,φp1:R→R,φp1(s)=|s|p1-2s,s≠0,φp1(0)=0,g是定义在R2上的连续函数,关于t是周期的且g(t,·)=g(t+2π,·),∀t∈R.e,τ是定义在R上的连续2π-周期函数.

2 周期解的存在性

3 例子

例1 考虑下列方程:

4 结 论

本文应用Manásevich-Mawhin的连续性定理和一些分析技巧,在没有f(0)=0和的条件下,得到了p-Laplacian方程(3)存在2π-周期解的新的充分性条件.

[1] LIU Bing-wen.Periodic solutions for Liénard type p-Laplacian equation with a deviating argument[J].Journal of Computational and Applied Mathematics,2008,214(1):13-18.

[2] LU Shi-ping.New results on the existence of periodic solutions to a p-Laplacian differential equation with a deviating argument[J].Journal of Mathematical Analysis and Applications,2007,336(2):1107-1123.

[3] MÂNASEYICH R,MAWHIN J L.Periodic solutions for nonlinear systems with p-Laplacian-like operators[J].Journal of Differential Equations,1998,145(2):367-393.

[4] ZHANG Fu-xing,LI Ya.Existence and uniqueness of periodicsolutions for a kind of Duffing type p-Laplacian equation[J].Nonlinear Analysis:Real World Applications,2008,9(1):985-989.

[5] ZHOU Ying-gao,TANG Xian-hua.Periodic solutions for a kind of Rayleigh equation with a deviating argument[J].Computers &Mathematics with Applications,2007,53(5):825-830.

[6] ZONG Ming-gang,LIANG Hong-zhen.Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments[J].Applied Mathematics Letters,2007,20(1):43-47.

[7] XIAO Bing,LIU Bing-wen.Periodic solutions for Rayleigh type p-Laplacian equation with a deviating argument[J].Nonlinear Analysis:Real World Applications,2009,10(1):16-22.

[8] WANG Gen-qiang,YAN Ju-rang.On existence of periodic solutions of the Rayleigh equation of retarded type[J].The International Journal of Mathematics and Mathematical Sciences,2000,23(1):65-68.

[9] WANG Gen-qiang,CHENG Sui-sun.A priori bounds for periodic solutions of a delay Rayleigh equation[J].Applied Mathematics Letters,1999,12(3):41-44.

Periodic Solutions for a Kind of p-Laplacian Equation with a Deviating Argument

TANG Mei-lan,LIU Xin-ge†
(School of Mathematics and Statistics,Central South Univ,Changsha,Hunan 410083,China)

The existence of periodic solutions for a kind of p-Laplacian differential equation with two p-Laplacian operators was investigated.Based on Manásevich-Mawhin continuation theorem and some analysis skills,new sufficient conditions for the existence of periodic solutions were given.An example was provided to demonstrate the effectiveness of the proposed result.

periodic systems;p-Laplacian operators;periodic solutions;existence;Manásevich- Mawhin continuation theorem

O175.6

A

1674-2974(2012)08-0090-03*

2011-07-10

国家自然科学基金资助项目(61070190);中南大学前沿研究计划资助项目(2010QZZD015);国家社会科学基金资助项目(10BJL020)

唐美兰(1972-),女,湖南邵东人,中南大学副教授,博士

†通讯联系人,E-mail:liuxgliuhua@163.com

猜你喜欢

变元美兰充分性
直接有限环的新刻画
Liénard方程存在周期正解的充分必要条件
解析簇上非孤立奇点的C0-Rv-V(f)-充分性
沈美兰落户上海
一类具有偏差变元的p-Laplacian Liénard型方程在吸引奇性条件下周期解的存在性
维持性血液透析患者透析充分性相关因素分析
刘美兰:写出自己的诗行
第二次离婚
关于部分变元强指数稳定的几个定理
非自治系统关于部分变元的强稳定性*