(5)
2 相关引理
为证明定理需要,给出以下引理.
![](https://img.fx361.cc/images/2023/0413/8ae4b3175976ab2662916ba589cca7b377ae825b.webp)
![](https://img.fx361.cc/images/2023/0413/df743288c8fcd8893c67392082b8aab52524dcb7.webp)
![](https://img.fx361.cc/images/2023/0413/cd52e7aff769949ea7c3c31c3b9703126b26201b.webp)
![](https://img.fx361.cc/images/2023/0413/6958826c33da74f863989279bdb9a8ae1750a361.webp)
(6)
![](https://img.fx361.cc/images/2023/0413/03be13ec7a602065cda87e6732be1c34d1968d4e.webp)
![](https://img.fx361.cc/images/2023/0413/746abbfb154b09701e1a0dc22cf2023383368024.webp)
(7)
时,结论是精确的.
3 主要结论及证明
以下假定a>0且c>0.
定理1设f∈Ωp(a,c;A,B),且f形如(1)式,若f满足
![](https://img.fx361.cc/images/2023/0413/9b43cc912c332cdb25931c9e4209cccd62904add.webp)
则Nδ(f)⊂Ωp(a,c;A,B).
证由(2)式可得g∈Ωp(a,c;A,B)当且仅当
![](https://img.fx361.cc/images/2023/0413/966d9a6a900d9d788fff3cf6596969a6d584bb4d.webp)
上式等价于
![](https://img.fx361.cc/images/2023/0413/bff8384a5a4686c5555cef0c685612e8714349f0.webp)
(8)
其中
![](https://img.fx361.cc/images/2023/0413/11d511176b0adfbde30f37d8225b8efd55eee0d5.webp)
(9)
由(9)式可得
![](https://img.fx361.cc/images/2023/0413/6f2027a883e946dc640fe22bb03e6fcc3f2973e8.webp)
n,p∈N.
![](https://img.fx361.cc/images/2023/0413/9e7a30d46353e27fea6083a732a3e2d87df66eff.webp)
![](https://img.fx361.cc/images/2023/0413/944ee4db9e67b6bac47a37824117cd8fdec90ea8.webp)
![](https://img.fx361.cc/images/2023/0413/02369eed1e03119dcf80795afc49db7a405e7089.webp)
若δ不能再减小,则结论是精确的.
证利用和定理1相同的证明方法可证得
![](https://img.fx361.cc/images/2023/0413/1bd447062b4596d9da0b8c5562384175fd67ee83.webp)
![](https://img.fx361.cc/images/2023/0413/1d0e266c1cd952d683825ccf4aff58061a871bf8.webp)
余下部分的证明类似于定理1的证明. 下面考虑精确性.取
![](https://img.fx361.cc/images/2023/0413/b19a8e4d19eb7cbbc061099072c97ec772e63df0.webp)
![](https://img.fx361.cc/images/2023/0413/22269175134b01f59d225698c2bd79e3be6cb5df.webp)
![](https://img.fx361.cc/images/2023/0413/77e2ec3e4dbce703693cee60053dcce66431a69d.webp)
![](https://img.fx361.cc/images/2023/0413/99660f4e50b8a1dd4b44d2396aacc93de5eb427e.webp)
(10)
由定理的假设可得
![](https://img.fx361.cc/images/2023/0413/468ad5f1ae08e20c58b2ff5c3b394e4e93f4e71f.webp)
![](https://img.fx361.cc/images/2023/0413/40717887974d9c223448c232177a897c090b2229.webp)
n=p,p+1,…;p∈N.
利用(4)式可得
![](https://img.fx361.cc/images/2023/0413/221b338c7738ae589326298af5e385fd576036e9.webp)
易证常数1是最精确的. 证毕.
类似于证明定理2的方法易推证下面结论成立.
![](https://img.fx361.cc/images/2023/0413/8637456a4a50d337301e361f08fb7ee584588f13.webp)
参考文献:
[1] SRIVASTAVA H M, PATEL J. Some subclasses of multivalent functions involving a certain linear operator[J].J Math Anal Appl, 2005, 310(1):209-228.
[2] NOOR K I. Some classes ofp-valent analytic functions defiened by certain integral operator [J]. Appl Math Comput, 2004,157(3):835-840.
[3] LIU J L, SRIVASTAVA H M. Subclasses of meromorphically multivalent functions associated with a certain linear operator[J].Math Comput Modelling, 2004, 39(1):35-44.
[4] LIU J L, SRIVASTAVA H M. Classes of meromorphically multivalent functions associated with the generalized hypergeometeic function[J].Math Comput Modelling, 2004, 39(1):21-34.
[5] GOEL R M, SOHI N S. A new criteron forp-valent functions[J]. Proc Amer Math Soc, 1980,78(3):353-357.
[6] 韦 叶,陈建兰,刘金林.由线性算子定义的一类p叶解析函数[J].扬州大学学报, 2006, 9(1):5-8.
[7] 杨定恭.由线性算子定义的解析多叶函数类[J].常熟理工学院学报, 2006, 20(4):9-14.
[8] 程艳莉,刘金林.一个线性算子及其相关的亚纯多叶函数类[J].扬州大学学报,2004, 7(2):10-12.
[9] LIU J L. On a subclass of meromorphicp-valent functions defined by certain linear operator [J]. J Math, 2001, 21(3):276-280.
[10] 程艳莉.具有正系数的亚纯p叶函数的一个子类[J].甘肃联合大学学报,2004,18(3):16-19.