APP下载

光纤生物传感器的传感机制

2011-10-26贵州大学职业技术学院贵州贵阳550003

中国科技信息 2011年8期
关键词:磷光光吸收反应物

黄 政 贵州大学职业技术学院, 贵州贵阳 550003

光纤生物传感器的传感机制

黄 政 贵州大学职业技术学院, 贵州贵阳 550003

本文综述了光学生物传感器的传感机制,按照其光学现象来进行传感可分为反应池光吸收型、敏感膜光反射与散射型、荧光型与磷光型传感,分别综述了它们的传感原理、特点及实际应用。

生物传感器;荧光

引言

传感器是能感受某种被测量信号,并将其转换成声、光、电等信号的元件,包括敏感元件、转换元件以及相应线路等。传感器的种类很多,其中以抗原抗体、酶、核酸、细胞等生物材料作为敏感元件组成的传感器称为生物传感器,而以光纤传导和收集光信号进行生物检测的传感器称为光纤生物传感器(fiber optic biosensor,FOBS),这种传感器通过检测生物反应所产生的光,通过检测光的强度、振幅、相位等参数确定被检物质的量。与其他传感器相比,这种传感器具有抗电磁干扰能力强,不用参考电极,可以实现探头微型化以及用于遥测和适时检测等优点。

1 反应池光吸收型传感

光纤传感器系统中,可利用一系列光纤现象来传感化学量,其中最简单的方法莫过于在特定波长处的光吸收效应,光吸收效应主要用于检测池分离型光纤传感器,即一根光纤或光纤束将光引入化学反应池,由化学反应池返回的光用另一根光纤或光纤束收集。光吸收的强弱取决于待测分子的吸收率、光程及光波长。一束准直光在吸收介质中经过距离z后检测到的光强由式(1)表示:

在一个光纤化学传感系统中化学反应物的种类及其浓度通常需满足下面两个条件。

① 在被测参数变化范围内(如某种被测化学物的浓度最小值和最大值),受该参数制约的传输光强变化必须足够大以获得相当的灵敏度。一般而言,在测量范围内,该变化值为信号强度的一个至两个数量级比较合适。当然,这只是一个度。在这种情况下,需要有一个非线性强度函数,为了得到最高的精确度,在被测量参数的变化范围内,信号强度应有最大的变化量。

② 在最大吸收时,化学反应物中的光传输量仍需维持足够大,因为在有噪声的情况下,信号必须有足够大的相对值。实际上,这意味着传感元件的光损耗(其大小由待测反应物及传感器构造共同决定)不能太大,否则将难以从干扰(诸如周围泄露光等)中分离信号分量。这一要求并不是指传输的光信号必须比周围光信号大。如果采用光源调制及窄带检测方法,只要总光量大致使探测器或信号处理电路出现饱和,则比环境光小得多的信号光仍是容许的。

一般来讲,为保证传感器精确地吸收测量,需要同时监测至少两个波长。这两个波长的选择是在其中一个波长上对测量环境变化敏感而在另一个波长上不敏感为原则的。这种双通道系统能补偿诸如光纤耦合效率波动、光源功率波动以及光纤、探测器或其他光器件的老化而引起的共模效应。

2 敏感膜光反射与散射型传感

“单端”光纤系统具有较多的优越性,利用一面镜子(或其他反射面),或利用某一附加材料的光散射特性,将部分吸收光反向散射到接收光纤中去可构成一类更具优越性的光纤传感器。试剂附着于无色膜材料的表面,膜紧贴于光纤端面。膜的漫反射要足够大,并且漫反射不仅发生在膜表面还发生于膜内。待测物的加入能改变反向散射光的强度。这种光强度的变化可以通过一种单向方式监测,即在入射光纤相同的方向上放置一根接收光纤。在实际应用中可利用分叉光纤提供多跟入射光纤和出射光纤。一般来说选择具备下述特点的反应物支撑材料是相当重要的。

图1 膜吸收—散射传感原理

① 膜能实现反应物的化学偶合或结合反应物的同时又不影响反应物的光学传感检测能力。一般来说,偶合于膜上的反应物与自由溶液状态的反应物发生反应的方式不同,在有些场合,反应物偶合能提高它的稳定性。

② 膜上的孔状结构要有足够的渗透性,以保证化学样品在规定的响应时间内有充分的扩散,这样才能在该响应时间内进行测量。对于空隙很小的膜,其内部溶液往往要30min才能与外界环境达到平衡,这对需要在数分钟内得到被测参数信息的应用时不适宜的。

③ 膜的浸润特性应与被测环境相适应。比如测量水溶液性物质时使用的疏水膜是不合适的,同样的,当测量在油或脂类环境中进行时,就要使用油浸润膜。

④ 来自膜的漫反射光应尽可能有固定不变的光谱响应。这意味着膜不含有光谱吸收物质,即使是非常好的散射材料也常常会使波长有些改变,但通常这些改变并不严重。在实际应用中,普通膜材料都能满足这一要求。

3 荧光型传感与磷光型传感

3.1 荧光型传感

荧光现象直接与吸收有关,因为能量较低的辐射在再次发光之前必须要吸收光能量。产生荧光的效率取决于荧光物的浓度、吸收截面和量子效率以及光程长。在实际应用中,荧光物水溶液的量子效率可接近于1.0(如荧光素),当它的量子效率降到0.05时仍然是可用的。在实验系统中可以调整其他一些参数,以确保最大限度利用激发光能量。

荧光分子具有特定的激发光波长范围,在该范围内分子可以被激发,一旦受激,分子在短时间内迅速衰减,其发射光谱也能确定。如简单荧光分子若丹明-B的激发光谱和荧光光谱如图2所示。可以看到荧光辐射发生在波长较长处,并且受激峰值波长(564nm)与辐射峰值波长(583nm)分界明显。峰值波长差值称为斯托克斯频移,一般荧光物质的斯托克斯频移值大约是10~20nm(300~600波数),使用诸如藻胆蛋白这样较复杂的分子可以得到较大的斯托克斯频移。

为了在光纤传感器中使用荧光效应,就必须保证光源、荧光染料和探测器系统的光谱特性相互匹配。光源和探测器一般都为宽带器件,需要附加滤波器使其工作于窄带范围,还可以构造若干谱重叠积分运算,以辅助系统优化设计。

荧光现象的优点是它允许测量环境中被测物与其他样本同时并存;另外,散射光及表面粗糙度的不利影响可通过频移减少到最低限度。在实际的光纤传感器结构中,荧光现象的应用有如下两个基本方法。其一是作为标记方法;另一个是作为化学探测器。

图2 荧光染料(若丹明-B)的激发光谱和荧光光谱

3.2 磷光型传感

由于分子的受激态能维持数纳秒,因此具有荧光现象的有机化合物的应该寿命通常非常短,另外,即使分子的受激态能维持较长时间,附近环境中的其他物质也会使这些受激态分子返回基态。而对于固态物质,其寿命则长得多,特别是可以利用其磷光现象。荧光和磷光的根本区别是:荧光是由激发单重态最低振动能层至基态个振动能层的跃迁产生的。正如荧光现象一样,磷光现象也有两个基本的应用。

① 作为标记方法: 它作为标记物优于荧光现象的地方在于,当激发光散去之后仍存在磷光辐射,这样就能消除激发光的散射影响,而激发光的散射影响正是荧光系统中限制系统性能的因素。

② 作为探测器: 磷光可以淬灭,这一现象可用于传感。例如,在商品化的光纤湿度测量系统中,就利用了高温下稀土磷光体的猝灭现象。

磷光现象的主要缺点是瞬时输出光的能量低,为了解决这一问题,通常采取输出信号的累加。

4 结束语

光纤生物传感器由于其实用方便、灵敏度高等优点,已成为人们越来越关注的研究热点。其小型化、规格化、商品化是将来发展的趋势,因此根据不同需求,合理选取和应用传感机理的进行设计尤为重要,相信在不久的将来将有成熟的产品推向市场。

[1]姚守拙.化学与生物传感器[M].化学工业出版社.2006

[2] CLARK L C,LYONS C.Electrode Systems for Continuous Monitoring in Cardinovascular Surgery[J].AnnN YAcad Sci,1962,102:29—45

[3]马立人,蒋中华. 生物芯片[M].化学工业出版社.2002

[4]冯德荣.生物传感器的研究现状和发展方向[J].山东科学.1999,12(4):1-6

[5]董文宾.生物传感器在水质分析监测中的应用[J].工业水处理.2005,25(3):17—19

The Sensing Mechanism of Fiber-Optic Biosensor

Huang Zheng Vocational Technical College of Guizhou University, Guiyang ,550003,China

This paper review the sensing mechanism of fiberoptic biosensor. There are three general kinds commonly employed:optical absorption in reaction tank, optical reflection and scattering with sensitive film, fluorescence sensing and phosphorescence sensing.Their sensing mechanism,characteristic and practical application are reviewed,respectively.

biosensor;fluorescence

10.3969/j.issn.1001-8972.2011.08.027

猜你喜欢

磷光光吸收反应物
不同参数对激光诱导磷光测温技术的影响
基于三能级系统的He原子XUV光吸收谱
微光在大气中的传输特性研究
基于Mn掺杂ZnS量子点磷光内滤效应检测β—葡萄糖醛酸酶
基于Mn掺杂ZnS量子点的室温磷光传感应用的研究进展
初中化学中气体的制取、净化与干燥
浅析纺织品的光吸收保暖性能
磷光水泥:点亮城市不再用电
化学反应中的能量变化考点点击
化学平衡移动对反应物转化率的影响